Skip to main content

Zinc Deficiency and Epigenetics

  • Living reference work entry
  • First Online:
Handbook of Famine, Starvation, and Nutrient Deprivation

Abstract

Zinc (Zn) is an essential micronutrient element. This element in relation with the structure and function of many proteins and enzymes is important for a variety of biological activities, including epigenetic regulations. Zinc deficiency is common in many parts of the world and particularly in poor populations. Accumulating evidence has demonstrated that several key enzymes and zinc finger proteins with zinc atom(s) in the reactive center and binding site play important roles in DNA methylation and histone modifications. Therefore, zinc deficiency may disrupt the functions of these enzymes and proteins and result in epigenetic dysregulation. Furthermore, zinc deficiency may enhance inflammatory response and subsequently alter DNA methylation status of the genes involved in inflammation. In this chapter, we first describe zinc dietary sources and deficiency, and then discuss direct and indirect effects of zinc deficiency in DNA and chromatin methylation alteration. Finally, we prospect a new zinc biomarker and further investigation on the effects of zinc deficiency in epigenetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AI:

adequate intake

BHMT:

betaine homocysteine methyltransferase

DGLA:

dihomo-γ-linolenic acid

dTMP:

thymidylate monophosphate

DV:

daily value of foods

FAO:

food and agriculture organization

IL:

interleukin

LA:

linoleic acid

MTR:

methionine synthase

RDA:

recommended dietary allowance

RNI:

recommended nutrient intake

SAMe:

S-adenosyl methionine

SLC:

solute-linked carrier

WHO:

World Health Organization

ZFP:

zinc finger protein

References

  • Ackland ML, Michalczyk AA (2016) Zinc and infant nutrition. Arch Biochem Biophys 611:51–57

    Article  CAS  PubMed  Google Scholar 

  • Apgar J (1985) Zinc and reproduction. Annu Rev Nutr 5:43–68

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt ML, Kim AM, O’Halloran TV, Woodruff TK (2011) Zinc requirement during meiosis I-meiosis II transition in mouse oocytes is independent of the MOS-MAPK pathway. Biol Reprod. 84(3):526–36.

    Google Scholar 

  • Blattler A, Yao L, Wang Y, Ye Z, Jin VX, Farnham PJ (2013) ZBTB33 binds unmethylated regions of the genome associated with actively expressed genes. Epigenetics Chromatin 6(1):13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonaventura P, Benedetti G, Albarède F, Miossec P (2015) Zinc and its role in immunity and inflammation. Autoimmun Rev 14(4):277–285

    Article  CAS  PubMed  Google Scholar 

  • Castro C, Millian NS, Garrow TA (2008) Liver betaine-homocysteine S-methyltransferase activity undergoes a redox switch at the active site zinc. Arch Biochem Biophys 472(1):26–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Y, Li J, Yang S, Li P, Zhang X, Liu H (2012) CIBZ, a novel BTB domain containing protein, is involved in mouse spinal cord injury via mitochondrial pathway independent of p53 gene. PLoS One 7(3):e33156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME (2012) Zinc and human health: an update. Arch Toxicol 86(4):521–534

    Article  CAS  PubMed  Google Scholar 

  • Chimienti F, Devergnas S, Favier A, Seve M (2004) Identification and cloning of a beta-cell specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53(9):2330–2337

    Article  CAS  PubMed  Google Scholar 

  • Corry GN, Tanasijevic B, Barry ER, Krueger W, Rasmussen TP (2009) Epigenetic regulatory mechanisms during preimplantation development. Birth Defects Res C Embryo Today 87(4):297–313

    Article  CAS  PubMed  Google Scholar 

  • Debey P, Szöllösi MS, Szöllösi D, Vautier D, Girousse A, Besombes D (1993) Competent mouse oocytes isolated from antral follicles exhibit different chromatin organization and follow different maturation dynamics. Mol Reprod Dev 36(1):59–74

    Article  CAS  PubMed  Google Scholar 

  • Dhawan DK, Chadha VD (2010) Zinc: a promising agent in dietary chemoprevention of cancer. Indian J Med Res 132:676–682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dreosti IE (2001) Zinc and the gene. Mutat Res 475(1–2):161–167

    Article  CAS  PubMed  Google Scholar 

  • Du J, Johnson LM, Jacobsen SE, Patel DJ (2015) DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol 16(9):519–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans GW (1986) Zinc and its deficiency diseases. Clin Physiol Biochem 4(1):94–98

    CAS  PubMed  Google Scholar 

  • Foster M, Samman S (2012) Zinc and regulation of inflammatory cytokines: implications for cardiometabolic disease. Nutrients 4(7):676–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frassinetti S, Bronzetti G, Caltavuturo L, Cini M, Croce CD (2006) The role of zinc in life: a review. J Environ Pathol Toxicol Oncol 25(3):597–610

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Tian W, Pratt EB, Dirling LB, Shyng SL, Meshul CK et al (2009) Down-regulation of ZnT8 expression in INS-1 rat pancreatic beta cells reduces insulin content and glucose-inducible insulin secretion. PLoS One 4(5):e5679

    Article  PubMed  PubMed Central  Google Scholar 

  • Grüngreiff K, Reinhold D, Wedemeyer H (2016) The role of zinc in liver cirrhosis. Ann Hepatol 15(1):7–16

    Article  PubMed  Google Scholar 

  • Gumulec J, Masarik M, Krizkova S, Adam V, Hubalek J, Hrabeta J, Eckschlager T, Stiborova M, Kizek R (2011) Insight to physiology and pathology of zinc(II) ions and their actions in breast and prostate carcinoma. Curr Med Chem 18(33):5041–5051

    Article  CAS  PubMed  Google Scholar 

  • Gu HF (2015) Genetic, Epigenetic and Biological Effects of Zinc Transporter (SLC30A8) in Type 1 and Type 2 Diabetes. Curr Diabetes Rev. [Epub ahead of print] PubMed PMID: 26593983

    Google Scholar 

  • Gu HF (2016) Genetic, Epigenetic and Biological Effects of Zinc Transporter (SLC30A8) in Type 1 and Type 2 Diabetes. Curr Diabetes Rev 12:1–9

    Google Scholar 

  • Hales BF, Grenier L, Lalancette C, Robaire B (2011) Epigenetic programming: from gametes to blastocyst. Birth Defects Res A Clin Mol Teratol 91(8):652–665

    Article  CAS  PubMed  Google Scholar 

  • Ho E (2004) Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem 15(10):572–578

    Article  CAS  PubMed  Google Scholar 

  • Institute of Medicine, Food and Nutrition Board (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy Press, Washington, DC

    Google Scholar 

  • Sandström B (1997) Bioavailability of zinc. Eur J Clin Nutr 51(1 Suppl):S17–S19

    PubMed  Google Scholar 

  • Jing M, Rech L, Wu Y, Goltz D, Taylor CG, House JD (2015) Effects of zinc deficiency and zinc supplementation on homocysteine levels and related enzyme expression in rats. J Trace Elem Med Biol 30:77–82

    Article  CAS  PubMed  Google Scholar 

  • Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, Jacobsen LM, Schatz DA, Lernmark Ã… (2017) Type 1 diabetes mellitus. Nat Rev Dis Primers 3:17016

    Article  PubMed  Google Scholar 

  • Kim AM, Vogt S, O’Halloran TV, Woodruff TK (2010) Zinc availability regulates exit from meiosis in maturing mammalian oocytes. Nat Chem Biol 6(9):674–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keen CL, Hanna LA, Lanoue L, Uriu-Adams JY, Rucker RB, Clegg MS (2003) Developmental consequences of trace mineral deficiencies in rodents: acute and long-term effects. J Nutr 133(5 Suppl 1):1477S–1480S

    CAS  PubMed  Google Scholar 

  • Knez M, Stangoulis JCR, Zec M, Debeljak-Martacic J, Pavlovic Z, Gurinovic M, Glibetic M (2016) An initial evaluation of newly proposed biomarker of zinc status in humans – linoleic acid: dihomo-γ-linolenic acid (LA:DGLA) ratio. Clin Nutr ESPEN 15:85–92

    Article  PubMed  Google Scholar 

  • Lacerda LD, Molisani MM (2006) Three decades of Cd and Zn contamination in Sepetiba Bay, SE Brazil: Evidence from the mangrove oyster Crassostraea rhizophorae. Mar Pollut Bull 52(8):974–977

    Article  CAS  PubMed  Google Scholar 

  • Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11(1):39–46

    Article  CAS  PubMed  Google Scholar 

  • Lin CC, Huang YL (2015) Chromium, zinc and magnesium status in type 1 diabetes. Curr Opin Clin Nutr Metab Care 18(6):588–592

    Article  CAS  PubMed  Google Scholar 

  • Liuzzi JP, Cousins RJ (2004) Mammalian zinc transporters. Annu Rev Nutr 24:151–172

    Article  CAS  PubMed  Google Scholar 

  • Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367(9524):1747–1757

    Article  PubMed  Google Scholar 

  • Maret W (2017) Zinc in Pancreatic Islet Biology, Insulin Sensitivity, and Diabetes. Prev Nutr Food Sci 22(1):1–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Matthews RG, Goulding CW (1997) Enzyme-catalyzed methyl transfers to thiols: the role of zinc. Curr Opin Chem Biol 1(3):332–339

    Article  CAS  PubMed  Google Scholar 

  • Miao X, Sun W, Fu Y, Miao L, Cai L (2013) Zinc homeostasis in the metabolic syndrome and diabetes. Front Med 7(1):31–52

    Article  PubMed  Google Scholar 

  • Mocchegiani E, Muzzioli M, Giacconi R (2000) Zinc and immunoresistance to infection in aging: new biological tools. Trends Pharmacol Sci 21(6):205–208

    Article  CAS  PubMed  Google Scholar 

  • Murphy EW, Willis BW, Watt BK (1975) Provisional tables on the zinc content of foods. J Am Diet Assoc 66(4):345–355

    CAS  PubMed  Google Scholar 

  • Páez-Osuna F, Ruiz-Fernández AC, Botello AV, Ponce-Vélez G, Osuna-López JI, Frías-Espericueta MG, López-López G, Zazueta-Padilla HM (2002) Concentrations of selected trace metals (Cu, Pb, Zn), organochlorines (PCBs, HCB) and total PAHs in mangrove oysters from the Pacific Coast of Mexico: an overview. Mar Pollut Bull 44(11):1303–1308

    Article  PubMed  Google Scholar 

  • Prasad AS (2001) Discovery of human zinc deficiency: impact on human health. Nutrition 17(7–8):685–687

    Article  CAS  PubMed  Google Scholar 

  • Prasad AS (2012) Discovery of human zinc deficiency: 50 years later. J Trace Elem Med Biol 26(2–3):66–69

    Article  CAS  PubMed  Google Scholar 

  • Prasad AS (2013) Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr 4(2):176–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad AS (2014) Zinc is an Antioxidant and Anti-Inflammatory Agent: Its Role in Human Health. Front Nutr 1:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Seman NA, Mohamud WN, Östenson CG, Brismar K, Gu HF (2015) Increased DNA methylation of the SLC30A8 gene promoter is associated with type 2 diabetes in a Malay population. Clin Epigenetics 7:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharif R, Thomas P, Zalewski P, Fenech M (2012) The role of zinc in genomic stability. Mutat Res 733(1–2):111–121

    Article  CAS  PubMed  Google Scholar 

  • Shimbo T, Wade PA (2016) Proteins that read DNA methylation. Adv Exp Med Biol 945:303–320

    Article  CAS  PubMed  Google Scholar 

  • Smith BC, Denu JM (2009) Chemical mechanisms of histone lysine and arginine modifications. Biochim Biophys Acta 1789(1):45–57

    Article  CAS  PubMed  Google Scholar 

  • Tian X, Diaz FJ (2013) Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development. Dev Biol 376(1):51–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uriu-Adams JY, Keen CL (2010) Zinc and reproduction: effects of zinc deficiency on prenatal and early postnatal development. Birth Defects Res B Dev Reprod Toxicol 89(4):313–325

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Liu W, Black S, Turner O, Daniel JM, Dean-Colomb W, He QP, Davis M, Yates C (2016) Kaiso, a transcriptional repressor, promotes cell migration and invasion of prostate cancer cells through regulation of miR-31 expression. Oncotarget 7(5):5677–5689

    Article  PubMed  Google Scholar 

  • Wessells KR, Brown KH (2012) Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One 7(11):e50568

    Article  PubMed  PubMed Central  Google Scholar 

  • Wessells KR, Singh GM, Brown KH (2012) Estimating the global prevalence of inadequate zinc intake from national food balance sheets: effects of methodological assumptions. PLoS One 7(11):e50565

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson RL, Grieger JA, Bianco-Miotto T, Roberts CT (2016) Association between Maternal Zinc Status, Dietary Zinc Intake and Pregnancy Complications: A Systematic Review. Nutrients 8(10):pii: E641

    Article  Google Scholar 

  • Wise A (1995) Phytate and zinc bioavailability. Int J Food Sci Nutr 46(1):53–63

    Article  CAS  PubMed  Google Scholar 

  • Wong CP, Rinaldi NA, Ho E (2015) Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation. Mol Nutr Food Res 59(5):991–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization and Food and Agriculture Organization of the United Nations (2004) Vitamin and mineral requirements in human nutrition, 2nd edn. World Health Organization, Geneva

    Google Scholar 

  • Wu LC (2002) ZAS: C2H2 zinc finger proteins involved in growth and development. Gene Expr 10(4):137–152

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Liang D, Lian X, Chi ZH, Wang X, Zhao Y, Ping Z (2016b) Effect of zinc deficiency on mouse renal interstitial fibrosis in diabetic nephropathy. Mol Med Rep 14(6):5245–5252

    CAS  PubMed  Google Scholar 

  • Zhang X, Liang D, Fan J, Lian X, Zhao Y, Wang X, Chi ZH, Zhang P (2016a) Zinc Attenuates Tubulointerstitial Fibrosis in Diabetic Nephropathy Via Inhibition of HIF Through PI-3K Signaling. Biol Trace Elem Res 173(2):372–383

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Zhong Y, Yang FH, Li ZB, Zhou J, Liu XH, Li M, Hu F (2016) Kaiso represses the expression of glucocorticoid receptor via a methylation-dependent mechanism and attenuates the anti-apoptotic activity of glucocorticoids in breast cancer cells. BMB Rep 49(3):167–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuccotti M, Piccinelli A, Giorgi Rossi P, Garagna S, Redi CA (1995) Chromatin organization during mouse oocyte growth. Mol Reprod Dev 41(4):479–485

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvest F. Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Gu, H.F., Zhang, X. (2017). Zinc Deficiency and Epigenetics. In: Preedy, V., Patel, V. (eds) Handbook of Famine, Starvation, and Nutrient Deprivation. Springer, Cham. https://doi.org/10.1007/978-3-319-40007-5_80-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40007-5_80-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40007-5

  • Online ISBN: 978-3-319-40007-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics