Skip to main content

Introduction to Miniaturisation

  • Chapter
  • First Online:
Micro-Manufacturing Technologies and Their Applications

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

Miniaturisation of systems and devices is a trend that started a few decades ago, and which is becoming more and more relevant to our everyday lives. The concept of micro-manufacturing evolved as a direct result of manufacturing technologies used for integrated circuit fabrication. These allowed batch processing, but limited the range of materials and geometries. A range of micro-manufacturing technologies has been developed to overcome these limitations. The aim of this chapter is to review the main physical phenomena related to miniaturisation, in terms of scaling laws, forces, materials, processes and production systems. Indeed, when approaching the micro-scale, some physical phenomena considered negligible at the macro-scale, become significant and have to be taken into account in the design, manufacturing, and assembly of micro-devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23(5):22–36

    Google Scholar 

  2. Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization. CRC Press, Cleveland

    Google Scholar 

  3. Ghosh A, Corves B (2015) Introduction to micromechanisms and microactuators. Springer, India

    Google Scholar 

  4. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev of Mod Phys 77(3):977–1026. ISSN 0034-6861

    Google Scholar 

  5. Van Brussel H, Peirs J, Reynaerts D, Delchambre A, Reinhart G, Roth N, Weck M, Zussman E (2000) Assembly of micro-systems. Ann CIRP 49(2):451–472

    Article  Google Scholar 

  6. Zhou Shu-Ang (2003) On forces in microelectromechanical systems. Intl J Eng Sci 41:313–335

    Article  Google Scholar 

  7. Milonni PW (1994) The quantum vacuum: an introduction to quantum electrodynamics. Academic Press, San Diego

    Google Scholar 

  8. Rob Legtenberg A, Groeneveld W, Elwenspoek M (1996) Comb-drive actuators for large displacements. J Micromech Microeng 6:320–329

    Article  Google Scholar 

  9. Wallash AJ, Levit L (2003) Electrical breakdown and ESD phenomena for devices with nanometer-to-micron gaps. In: Micromachining and microfabrication. International society for optics and photonics, pp 87–96

    Google Scholar 

  10. Townsend JS (1915) Electricity in gases. Clarendon Press, Oxford

    Google Scholar 

  11. Nye JF (1985) Physical properties of crystals. Clarendon Press, Oxford

    MATH  Google Scholar 

  12. Hall EO (1951) Deformation and ageing of mild steel. Phys Soc Proc 64(B381):747–753

    Article  Google Scholar 

  13. Petch NJ (1953) Cleavage strength of polycrystals. J Iron Steel Inst 174:25–28

    Google Scholar 

  14. Chang H, Altstetter CJ, Averbach RS (1995) Nanophase metals-processing and properties. In Advanced materials and processing 3

    Google Scholar 

  15. Fu MW, Chan WL (2014) Micro-scaled products development via microforming. Springer series in advanced manufacturing. Springer, London. doi:10.1007/978-1-4471-6326-8_2

  16. Weissmüller J, Löffler J, Kleber M (1995) Atomic structure of nanocrystaline metals studied by diffraction techniques ad EXAFS. Nanostruct Mater 6(1–4):105–114

    Article  Google Scholar 

  17. Yoshizawa Y, Oguma S, Yamauchi K (1988) New Fe-based soft magnetic-alloys composed of ultrafine grain-structure. J Appl Phys 64:6044–6046

    Article  Google Scholar 

  18. Liu QY, Zhang QH, Zhang JH, Zhang M (2014) Influence of grain size and grain boundary of workpiece on micro EDM. Adv Mater Res 941–944:2116–2120. doi:10.4028/www.scientific.net/AMR.941-944.2116

    Article  Google Scholar 

  19. Vogler MP, DeVor RE, Kapoor SG (2004) On the modeling and analysis of machining performance in micro-endmilling. Part I: surface generation. ASME J Manuf Sci Eng 126:685–694

    Article  Google Scholar 

  20. Vogler MP, DeVor RE, Kapoor SG (2004) On the modeling and analysis of machining performance in micro-endmilling. Part II: cutting force prediction. ASME J Manuf Sci Eng 126:695–705

    Article  Google Scholar 

  21. Susmita K (2013) Introduction, classification and applications of smart materials: an overview. Am J Appl Sci 10(8):876–880

    Article  Google Scholar 

  22. Ahmad I (1988) ‘Smart’ structures and materials. In: Rogers CA (ed) Proceedings of army research office workshop on smart materials, structures and mathematical issues. Virginia Polytechnic Institute and State University, Blacksburg, VA, pp 13–16, 15–16 Sept 1988

    Google Scholar 

  23. Akhras G (2000) Smart materials and smart systems for the future. Can Military J 1(3):24–31

    Google Scholar 

  24. Dineva P, Gross D, Müller R, Rangelov T (2014) Piezoelectric materials in dynamic fracture of piezoelectric materials. Springer International Publishing, Switzerland

    Google Scholar 

  25. Delaey L (1991) Phase transformations in materials. In: Cahn RW, Haasen P, Kramer EJ (eds). Material science and technology, vol 5. VCH, Weinheim

    Google Scholar 

  26. Nespoli A, Besseghini S, Pittaccio S, Villa E, Viscuso S (2010) The high potential of shape memory alloys in developing miniature mechanical devices: a review on shape memory alloy mini-actuators. Sens Actuators A 158:149–160

    Article  Google Scholar 

  27. Hu M, Fu Y, Du H, Ling S (2004) Titanium nickel thin films for microactuation. In: Proceedings of the 9th international conference on new actuators, June. ISBN-3-933339-06-5: 79

    Google Scholar 

  28. Bar-Cohen Y (2001) Electroactive polymer (EAP) actuators as artificial muscles (reality, potential, and challenges). SPIE Press, Bellingham

    Google Scholar 

  29. Samatham R, Kim KJ, Dogruer D, Choi HR, Konyo M, Madden JD, Nakabo Y, Nam JD, Su J, Tadokoro S, Yim W, Yamakita M (2007) Active polymers: an overview in electroactive polymers for robotic applications: artificial muscles and sensors. Springer, London

    Google Scholar 

  30. Kawahara N, Suto T, Hirano T, Ishikawa Y, Kitahara T, Ooyama N, Ataka T (1997) Microfactories; new applications of micromachine technology to the manufacture of small products. Microsyst Technol 3:37–41

    Google Scholar 

  31. Feddema JT, Xavier P, Brown R (1998) Assembly planning at the micro scale. In: Proceeding of the workshop on precision manipulation at the micro and nano scales, proceedings of IEEE international conference on robotics and automation, Leuven, Belgium, May 16–20

    Google Scholar 

  32. Tanaka M (2001) Development of desktop machining microfactory. RIKEN Review 34: focused on advances on micro-mechanical fabrication techniques

    Google Scholar 

  33. http://www.nidec-sankyo.co.jp/english/technology/core_technology.html

  34. http://www.olympus-global.com/en/news/1999b/nr991201mifae.jsp

  35. Verettas I, Clavel R, Codourey A (2005) “Pocket factory”: concept of miniaturized modular cleanrooms, not yet published (No. LSRO2-CONF-2005-017) available at http://infoscience.epfl.ch/record/63609/files/TMMF05-pocketfactory.pdf

  36. Bacher JP, Bottinelli S, Breguet JM, Clavel R (2002) Delta3: a new ultra-high precision micro-robot. Journal Européen des Systèmes Automatisés, Hermes 36(9):1263–1275

    Google Scholar 

  37. Rizzi AA, Gowdy J, Hollis RL (1997) Agile assembly architecture: an agent based approach to modular precision assembly systems. In: Proceedings of IEEE international conference on robotics and automation, pp 1511–1516

    Google Scholar 

  38. Hollis RL, Cowdy J, Rizzi AA (2004) Design and development of a tabletop precision assembly system. Mechatronics & robotics 2004, IEEE, Aachen, Germany, pp 1624–1628, 13–15 Sept 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Fassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pagano, C., Fassi, I. (2017). Introduction to Miniaturisation. In: Fassi, I., Shipley, D. (eds) Micro-Manufacturing Technologies and Their Applications. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-39651-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39651-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39650-7

  • Online ISBN: 978-3-319-39651-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics