Skip to main content

Insights in Megakaryopoiesis and Platelet Biogenesis from Studies of Inherited Thrombocytopenias

  • Chapter
  • First Online:
Molecular and Cellular Biology of Platelet Formation

Abstract

Inherited thrombocytopenias (ITs) are clinically and genetically heterogeneous disorders characterized by defects in megakaryopoiesis and platelet biogenesis. Patients with ITs have a variable degree or even no bleeding symptoms because of low platelet count that can be associated with platelet dysfunction. ITs have been described as an isolated blood disorder but can also be part of a multisystem disorder. Mutations in more than 30 genes have already been shown to be implicated in ITs and will be recapitulated in this review. Because of that complexity, detailed clinical and laboratory investigations are needed for diagnosis of ITs. However, confirmed diagnosis can usually only be made by genetic analysis. In this review paper, a focus is made on the major contributions of next-generation sequencing approaches to the genetic landscape of ITs. Numerous novel, often unexpected, genes have been identified; still more are expected, as about 50 % of the IT cases received not yet a genetic diagnosis. In addition, the phenotypic spectrum associated with a single gene also constantly gains in complexity as illustrated with some examples. All these factors make genotype-phenotype correlations particularly difficult. Finally, we highlight some functional genetic approaches that increasingly appear important to understand the role of novel genes in defective megakaryopoiesis and platelet biogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Thon J, Italiano JE (2012) Platelet formation. Semin Hematol 47:220–226

    Article  Google Scholar 

  2. Doré LC, Crispino JD (2011) Transcription factor networks in erythroid cell and megakaryocyte development. Blood 118:231–239

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tijssen MR, Ghevaert C (2013) Transcription factors in late megakaryopoiesis and related platelet disorders. J Thromb Haemost 11:593–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Patel SR, Hartwih JH, Italiano JE (2014) The biogenesis of platelets from megakaryocyte proplatelets. J Clin Invest 115:3348–3354

    Article  Google Scholar 

  5. Schulze H, Korpal M, Hurov J, Kim S-W, Zhang J, Canteley LC, Graf T, Shivadasani RA (2006) Characterization of the megakaryocyte demarcation membrane system and its role in thrombopoiesis. Blood 107:3868–3875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Szalai G, LaRue AC, Watson DK (2006) Molecular mechanisms of megakaryopoiesis. Cell Mol Life Sci 63:2460–2476

    Article  CAS  PubMed  Google Scholar 

  7. Avanzi MP, Izak M, Oluwadara OE, Mitchell WB (2015) Actin inhibition increases megakaryocyte proplatelet formation through an apoptosis-dependent mechanism. PLoS One 10(4), e0125057

    Article  PubMed  PubMed Central  Google Scholar 

  8. Josefsson EC, Burnett DL, Lebois M, Debrincat MA, White MJ, Henley KJ, Lane RM, Moujalled D, Preston SP, O’Reilly LA, Pellegrini M, Metcalf D, Strasser A, Kile BT (2014) Platelet production proceeds independently of the intrinsic and extrinsic apoptosis pathways. Nat Commun 5:3455

    Article  PubMed  Google Scholar 

  9. Freson K, Wijgaerts A, van Geet C (2014) Update on the causes of platelet disorders and functional consequences. Int J Lab Hematol 36(3):313–325

    Article  CAS  PubMed  Google Scholar 

  10. Westbury SK, Turro E, Greene D, Lentaigne C, Kelly AM, Bariana TK, Simeoni I, Pillois X, Attwood A, Austin S, Jansen SB, Bakchoul T, Crisp-Hihn A, Erber WN, Favier R, Foad N, Gattens M, Jolley JD, Liesner R, Meacham S, Millar CM, Nurden AT, Peerlinck K, Perry DJ, Poudel P, Schulman S, Schulze H, Stephens JC, Furie B, Robinson PN, van Geet C, Rendon A, Gomez K, Laffan MA, Lambert MP, Nurden P, Ouwehand WH, Richardson S, Mumford AD, Freson K, BRIDGE-BPD Consortium (2015) Human phenotype ontology annotation and cluster analysis to unravel genetic defects in 707 cases with unexplained bleeding and platelet disorders. Genome Med 7(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bolton-Maggs PHB, Chalmers EA, Collins PW, Harrison P, Kitchen S, Liesner RJ, Minford A, Mumford AD, Parapia LA, Perry DJ, Watson SP, Wilde JT, Williams MD (2006) A review of inherited platelet disorders with guidelines for their management on behalf of the UKHCDO. Br J Haematol 135:603–633

    Article  CAS  PubMed  Google Scholar 

  12. Balduini CL, Savoia A, Seri M (2013) Inherited thrombocytopenias frequently diagnosed in adults. J Thromb Haemost 11:1006–1009

    Article  CAS  PubMed  Google Scholar 

  13. Thrombogenomics. https://haemgen.haem.cam.ac.uk/thrombogenomics. Accessed 17 June 2015

  14. Savoia A (2015) Molecular basis of inherited thrombocytopenias. Clin Genet. doi:10.1111/cge.12607 [Epub ahead of print]

    Google Scholar 

  15. Köhler S, Doelken SC, Mungall CJ, Bauer S, Firth HV, Bailleul-Forestier I, Black GC, Brown DL, Brudno M, Campbell J, FitzPatrick DR, Eppig JT, Jackson AP, Freson K, Girdea M, Helbig I, Hurst JA, Jähn J, Jackson LG, Kelly AM, Ledbetter DH, Mansour S, Martin CL, Moss C, Mumford A, Ouwehand WH, Park SM, Riggs ER, Scott RH, Sisodiya S, Van Vooren S, Wapner RJ, Wilkie AO, Wright CF, Vulto-van Silfhout AT, de Leeuw N, de Vries BB, Washingthon NL, Smith CL, Westerfield M, Schofield P, Ruef BJ, Gkoutos GV, Haendel M, Smedley D, Lewis SE, Robinson PN (2014) The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res 42:D966–D974

    Article  PubMed  Google Scholar 

  16. Freson K, Matthijs G, Thys C, Mariën P, Hoylaerts MF, Vermylen J, Van Geet C (2002) Different substitutions at residue D218 of the X-linked transcription factor GATA1 lead to altered clinical severity of macrothrombocytopenia and anemia and are associated with variable skewed X inactivation. Hum Mol Genet 11:147–152

    Article  CAS  PubMed  Google Scholar 

  17. Freson K, Devriendt K, Matthijs G, Van Hoof A, De Vos R, Thys C, Minner K, Hoylaerts MF, Vermylen J, Van Geet C (2001) Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation. Blood 98:85–92

    Article  CAS  PubMed  Google Scholar 

  18. Song W-J, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D, Ratajczak J, Resende IC, Haworth C, Hock R, Loh M, Felix C, Roy D-C, Busque L, Kurnit D, Willman C, Gewirtz AM, Speck NA, Bushweller JH, Li FP, Gardiner K, Poncz M, Maris JM, Gilliland DG (1999) Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 23:166–175

    Article  CAS  PubMed  Google Scholar 

  19. Antony-Debré I, Bluteau D, Itzykson R, Baccini V, Renneville A, Boehlen F, Morabito M, Droin N, Deswarte C, Chang Y, Leverger G, Solary E, Vainchenker W, Favier R, Raslova H (2012) MYH10 protein expression in platelets as a biomarker of RUNX1 and FLI1 alterations. Blood 120:2719–2722

    Article  PubMed  Google Scholar 

  20. Monteferrario D, Bolar NA, Marneth AE, Hebeda KM, Bergevoet SM, Veenstra H, Laros-van Gorkom BA, Mackenzie MA, Khandanpour C, Botezatu L, Fransen E, Van Camp G, Duijnhouwer AL, Salemink S, Willemsen B, Huls G, Preijers F, Van Heerde W, Jansen JH, Kempers MJ, Loeys BL, Van Laer L, Van der Reijden BA (2013) A dominant-negative GFI1B mutation in the gray platelet syndrome. N Engl J Med 370:245–253

    Article  PubMed  Google Scholar 

  21. Stevenson WS, Morel-Kopp MC, Chen Q, Liang HP, Bromhead CJ, Wright S, Turakulov R, Ng AP, Roberts AW, Bahlo M, Ward CM (2013) GFI1B mutation causes a bleeding disorder with abnormal platelet function. J Thromb Haemost 11:2039–2047

    Article  CAS  PubMed  Google Scholar 

  22. Chen L, Kostadima M, Martens JH, Canu G, Garcia SP, Turro E, Downes K, Macaulay IC, Bielczyk-Maczynska E, Coe S, Farrow S, Poudel P, Burden F, Jansen SB, Astle WJ, Attwood A, Bariana T, de Bono B, Breschi A, Chambers JC, BRIDGE Consortium, Choudry FA, Clarke L, Coupland P, van der Ent M, Erber WN, Jansen JH, Favier R, Fenech ME, Foad N, Freson K, van Geet C, Gomez K, Guigo R, Hampshire D, Kelly AM, Kerstens HH, Kooner JS, Laffan M, Lentaigne C, Labalette C, Martin T, Meacham S, Mumford A, Nürnberg S, Palumbo E, van der Reijden BA, Richardson D, Sammut SJ, Slodkowicz G, Tamuri AU, Vasquez L, Voss K, Watt S, Westbury S, Flicek P, Loos R, Goldman N, Bertone P, Read RJ, Richardson S, Cvejic A, Soranzo N, Ouwehand WH, Stunnenberg HG, Frontini M, Rendon A (2014) Transcriptional diversity during lineage commitment of human blood progenitors. Science 345(6204):1251033

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang MY, Churpek JE, Keel SB, Walsh T, Lee MK, Loeb KR, Gulsuner S, Pritchard CC, Sanchez-Bonilla M, Delrow JJ, Basom RS, Forouhar M, Gyurkocza B, Schwartz BS, Neistadt B, Marquez R, Mariani CJ, Coats SA, Hofmann I, Lindsley RC, Williams DA, Abkowitz JL, Horwitz MS, King MC, Godley LA, Shimamura A (2015) Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat Genet 47(2):180–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Noetzli L, Lo RW, Lee-Sherick AB, Callaghan M, Noris P, Savoia A, Rajpurkar M, Jones K, Gowan K, Balduini CL, Pecci A, Gnan C, De Rocco D, Doubek M, Li L, Lu L, Leung R, Landolt-Marticorena C, Hunger S, Heller P, Gutierrez-Hartmann A, Xiayuan L, Pluthero FG, Rowley JW, Weyrich AS, Kahr WH, Porter CC, Di Paola J (2015) Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat Genet 47(5):535–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Germeshausen M, Ballmaier M, Welte K (2006) MPL mutations in 23 patients suffering from congenital amegakaryocytic thrombocytopenia: the type of mutation predicts the course of the disease. Hum Mutat 27:296

    Article  PubMed  Google Scholar 

  26. Bluteau D, Balduini A, Balayn N, Currao M, Nurden P, Deswarte C, Leverger G, Noris P, Perrotta S, Solary E, Vainchenker W, Debili N, Favier R, Raslova H (2014) Thrombocytopenia-associated mutations in the ANKRD26 regulatory region induce MAPK hyperactivation. J Clin Invest 124:580–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kunishima S, Kobayashi R, Itoh TJ, Hamaguchi M, Saito H (2009) Mutation of the beta1-tubulin gene associated with congenital macrothrombocytopenia affecting microtubule assembly. Blood 113:458–461

    Article  CAS  PubMed  Google Scholar 

  28. Notarangelo LD, Miao CH, Ochs HD (2008) Wiskott-Aldrich syndrome. Curr Opin Hematol 15:30–36

    Article  CAS  PubMed  Google Scholar 

  29. Kunishima S, Okuno Y, Yoshida K, Shiraishi Y, Sanada M, Muramatsu H, Chiba K, Tanaka H, Miyazaki K, Sakai M, Ohtake M, Kobayashi R, Iguchi A, Niimi G, Otsu M, Takahashi Y, Miyano S, Saito H, Kojima S, Ogawa S (2013) ACTN1 mutations cause congenital macrothrombocytopenia. Am J Hum Genet 92:431–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. De Rocco D, Cerqua C, Goffrini P, Russo G, Pastore A, Meloni F, Nicchia E, Moraes CT, Pecci A, Salviati L, Savoia A (1842) Mutations of cytochrome c identified in patients with thrombocytopenia THC4 affect both apoptosis and cellular bioenergetics. Biochim Biophys Acta 2013:269–274

    Google Scholar 

  31. Morison IM, Cramer Bordé EM, Cheesman EJ, Cheong PL, Holyoake AJ, Fichelson S, Weeks RJ, Lo A, Davies SM, Wilbanks SM, Fagerlund RD, Ludgate MW, da Silva Tatley FM, Coker MS, Bockett NA, Hughes G, Pippig DA, Smith MP, Capron C, Ledgerwood EC (2008) A mutation of human cytochrome c enhances the intrinsic apoptotic pathway but causes only thrombocytopenia. Nat Genet 40:387–389

    Article  CAS  PubMed  Google Scholar 

  32. Ware J, Russel SR, Marchese P, Ruggeri ZM (1993) Point mutation in a leucine-rich repeat of platelet glycoprotein Ib alpha resulting in the Bernard-Soulier syndrome. J Clin Invest 92:1213–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Noris P, Perrota S, Bottega R, Pecci A, Melazzini F, Civashi E, Russo S, Magrin S, Loffredo G, Di salvo V, Russo G, Casale M, De Rocco D, Grignani C, Cattanea M, Baronci C, Dragani A, Albano V, Jankovic M, Scianguetta S, Savoia A, Balduini CL (2012) Clinical and laboratory features of 103 patients from 42 Italian families with inherited thrombocytopenia derived from the monoallelic Ala156Val mutation of GPIbα (Bolzano mutation). Haematologica 97:82–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sadler JE, Budde U, Eikenboom JC, Favaloro EJ, Hill FGH, Holmberg L, Ingerslev J, Lee CA, Lillicrap D, Mannucci PM, Mazurier C, Meyer D, Nichols WL, Nishino M, Peake IR, Rodeghiero F, Schneppenheim R, Ruggeri ZM, Srivastava A, Montgomery RR, Federici AB (2006) Update on the pathophysiology and classification of von Willebrand disease: a report of the Subcommittee on von Willebrand Factor. J Thromb Haemost 4:2103–2114

    Article  CAS  PubMed  Google Scholar 

  35. Albers CA, Cvejic A, Favier R, Bouwmans EE, Alessi MC, Bertone P, Jordan G, Kettleborough RN, Kiddle G, Kostadima M, Read RJ, Sipos B, Sivapalaratnam S, Smethurst PA, Stephens J, Voss K, Nurden A, Rendon A, Nurden P, Ouwehand WH (2011) Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome. Nat Genet 43(8):735–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gunay-Aygun M, Falik-Zaccai TC, Vilboux T, Zivony-Elboum Y, Gumruk F, Cetin M, Khayat M, Boerkoel CF, Kfir N, Huang Y, Maynard D, Dorward H, Berger K, Kleta R, Anikster Y, Arat M, Freiberg AS, Kehrel BE, Jurk K, Cruz P, Mullikin JC, White JG, Huizing M, Gahl WA (2011) NBEAL2 is mutated in gray platelet syndrome and is required for biogenesis of platelet α-granules. Nat Genet 43(8):732–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kahr WH, Hinckley J, Li L, Schwertz H, Christensen H, Rowley JW, Pluthero FG, Urban D, Fabbro S, Nixon B, Gadzinski R, Storck M, Wang K, Ryu GY, Jobe SM, Schutte BC, Moseley J, Loughran NB, Parkinson J, Weyrich AS, Di Paola J (2011) Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome. Nat Genet 43(8):738–740

    Article  CAS  PubMed  Google Scholar 

  38. Hart A, Melet F, Grossfeld P, Chien K, Jones C, Tunnacliffe A, Favier R, Bernstrein A (2000) Fli-1 required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity 13:167–177

    Article  CAS  PubMed  Google Scholar 

  39. Grossfeld PD, Mattina T, Lai Z, Favier R, Jones KL, Cotter F, Jones C (2004) The 11q terminal deletion disorder: a prospective study of 110 cases. Am J Med Genet A 129A:51–61

    Article  PubMed  Google Scholar 

  40. Klopocki E, Schulze H, Strauss G, Ott C-E, Hall J, Trotier F, Fleischhauer S, Greenhalgh L, Newbury-Ecob RA, Neumann LM, Habenicht R, Konig R, Seemanova E, Megarbane A, Ropers H-H, Ullmann R, Horn D, Mundlos S (2007) Complex inheritance pattern resembling autosomal recessive inheritance involving a microdeletion in thrombocytopenia-absent radius syndrome. Am J Hum Genet 80:232–240

    Article  CAS  PubMed  Google Scholar 

  41. Albers CA, Paul DS, Schulze H, Freson K, Stephens JC, Smethurst PA, Jolley JD, Cvejic A, Kostadima M, Bertone P, Breuning MH, Debili N, Deloukas P, Favier R, Fiedler J, Hobbs CM, Huang N, Hurles ME, Kiddle G, Krapels I, Nurden P, Ruivenkamp CA, Sambrook JG, Smith K, Stemple DL, Strauss G, Thys C, van Geet C, Newbury-Ecob R, Ouwehand WH, Ghevaert C (2012) Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome. Nat Genet 44:435–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Balduini CL, Pecci A, Savoia A (2011) Recent advances in the understanding and management of MYH9-related inherited thrombocytopenias. Br J Haematol 154:161–174

    Article  CAS  PubMed  Google Scholar 

  43. Pecci A, Panza E, Pujol-Moix, Klersy C, Di Bari F, Bozzi V, Gresele P, Lethagen S, Fabris F, Dufour C, Granata A, Doubek M, Pecoraro C, Koivisto PA, Heller PG, Iolascon A, Alvisi P, Schwabe D, De Candia E, Rocca B, Russo U, Ramenghi U, Noris P, Seri M, Balduini CL, Savoia A (2008) Position of nonmuscle myosin heavy chain II1 (NMMHC-IIA) mutations predicts the natural history of MYH9-related disease. Hum Mutat 29:409–417

    Article  CAS  PubMed  Google Scholar 

  44. Parrini E, Ramazzotti A, Dobyns WB, Mei D, Moro F, Veggiotti P, Marini C, Brilstra EH, Dalla Bernardina B, Goodwin L, Bodell A, Jones MC, Nangeroni M, Palmeri S, Said E, Sander JW, Striano P, Takahashi Y, Van Maldergem L, Leonardi G, Wright M, Walsh CA, Guerrini R (2006) Periventricular heterotopia: phenotypic heterogeneity and correlation with Filamin A mutations. Brain 129:1892–1906

    Article  CAS  PubMed  Google Scholar 

  45. Berrou E, Adam F, Lebret M, Fergelot P, Kauskot A, Coupry I, Jandrot-Perrus M, Nurden A, Favier R, Rosa JP, Goizet C, Nurden P, Bryckaert M (2013) Heterogeneity of platelet functional alterations in patients with filamin A mutations. Arterioscler Thromb Vasc Biol 33:e11–e18

    Article  CAS  PubMed  Google Scholar 

  46. Freson K, Peeters K, De Vos R, Wittevrongel C, Thys C, Hoylaerts MF, Vermylen J, Van Geet C (2008) PACAP and its receptor VPAC1 regulate megakaryocyte maturation: therapeutic implications. Blood 111:1885–1893

    Article  CAS  PubMed  Google Scholar 

  47. Di Michele M, Peeters K, Loyen S, Thys C, Waelkens E, Overbergh L, Hoylaerts M, Van Geet C, Freson K (2012) Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) impairs the regulation of apoptosis in megakaryocytes by activating NF-kB: a proteomic study. Mol Cell Proteomics 11(1):M111.007625

    Google Scholar 

  48. Louwette S, Régal L, Wittevrongel C, Thys C, Vandeweeghde G, Decuyper E, Leemans P, De Vos R, Van Geet C, Jeaken J, Freson K (2013) NPC1 defect results in abnormal platelet formation and function: studies in Niemann-Pick disease type C1 patients and zebrafish. Hum Mol Genet 22:61–73

    Article  CAS  PubMed  Google Scholar 

  49. Motta I, Filocamo M, Poggiali E, Stroppiano M, Dragani A, Consonni D, Barcellini W, Gaidano G, Facchini L, Specchia G, Cappellini MD (2015) Splenomegaly Gaucher Disease study group. A multicentre observational study for early diagnosis of Gaucher disease in patients with Splenomegaly and/or Thrombocytopenia. Eur J Haematol. 96:352–59 [Epub ahead of print]

    Google Scholar 

  50. Nesin V, Wiley G, Kousi M, Ong EC, Lehmann T, Nicholi DJ, Suri M, Shahrizaila N, Katasanis N, Gaffney PM, Wierenga KJ, Tsiokas L (2014) Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis. Proc Natl Acad Sci U S A 111:4197–4202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grosse J, Braun A, Varga-Szabo D, Beyersdorf N, Schneider B, Zeitlmann L, Hanke P, Schropp P, Mühlstedt S, Zorn C, Huber M, Schmittwolf C, Jagla W, Yu P, Kerkau T, Schulze H, Nehls M, Nieswandt B (2007) An EF hand mutation in Stim1 causes premature platelet activation and bleeding in mice. J Clin Invest 117(11):3540–3550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hirata S, Takayama N, Jono-ohnishi R, Endo H, Nakamura S, Dohda T, Nishi M, Hamazaki Y, Ishii E, Kaneko S, Otsu M, Nakauchi H, Kunishima S, Eto K (2013) Congenital amegakaryocytic thrombocytopenia iPS cells exhibit defective MPL-mediated signaling. J Clin Invest 123:3802–3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sakurai M, Kunimoto H, Watanabe N, Fukuchi Y, Yuasa S, Yamazaki S, Nishimura T, Sadahira K, Fukuda K, Okano H, Nakauchi H, Morita Y, Matsumura I, Kudo K, Ito E, Ebihara Y, Tsuji K, Harada Y, Harada H, Okamoto S, Nakajima H (2014) Impaired hematopoietic differentiation of RUNX1-mutated induced pluripotent stem cells derived from FPD/AML patients. Leukemia 28(12):2344–2354

    Article  CAS  PubMed  Google Scholar 

  54. Antony-Debré I, Manchev VT, Balayn N, Bluteau D, Tomowiak C, Legrand C, Langlois T, Bawa O, Tosca L, Tachdjian G, Leheup B, Debili N, Plo I, Mills JA, French DL, Weiss MJ, Solary E, Favier R, Vainchenker W, Raslova H (2015) Level of RUNX1 activity is critical for leukemic predisposition but not for thrombocytopenia. Blood 125(6):930–940

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ingrungruanglert P, Amarinthnukrowh P, Rungsiwiwut R, Maneesri-le Grand S, Sosothikul D, Suphapeetiporn K, Israsena N, Shotelersuk V (2015) Wiskott-Aldrich syndrome iPS cells produce megakaryocytes with defects in cytoskeletal rearrangement and proplatelet formation. Thromb Haemost 113(4):792–805

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

KF is supported by the Fund for Scientific Research-Flanders (FWO-Vlaanderen, Belgium, G.0B17.13N] and by the Research Council of the University of Leuven (BOF KU Leuven‚ Belgium, OT/14/098].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen Freson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Freson, K. (2016). Insights in Megakaryopoiesis and Platelet Biogenesis from Studies of Inherited Thrombocytopenias. In: Schulze, H., Italiano, J. (eds) Molecular and Cellular Biology of Platelet Formation. Springer, Cham. https://doi.org/10.1007/978-3-319-39562-3_14

Download citation

Publish with us

Policies and ethics