Skip to main content

Platelet Functions Beyond Hemostasis

  • Chapter
  • First Online:
Molecular and Cellular Biology of Platelet Formation

Abstract

Platelets are small cellular fragments lacking a nucleus, derived from megakaryocytes, and are well known to have a major role in maintaining hemostasis. Apart from this well-established role, it is now becoming evident that platelets also have other important functions, besides hemostasis, during infection and inflammation. This chapter will focus on these nonhemostatic functions of platelets, in general, outlined as “platelets versus pathogens” and “platelet-target cell communication.” Platelets actively contribute to protection against invading pathogens and are capable of regulating immune functions in various target cells, all through an array of sophisticated mechanisms. These relatively novel features will be discussed, demonstrating an important multifunctional role of platelets in an inflammatory setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Semple JW, Italiano JE Jr, Freedman J (2011) Platelets and the immune continuum. Nat Rev Immunol 11:264–274

    Article  CAS  PubMed  Google Scholar 

  2. Machlus KR, Italiano JE Jr (2013) The incredible journey: from megakaryocyte development to platelet formation. J Cell Biol 201:785–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kapur R, Zufferey A, Boilard E, Semple JW (2015) Nouvelle cuisine: platelets served with inflammation. J Immunol 194:5579–5587

    Article  CAS  PubMed  Google Scholar 

  4. Youssefian T, Drouin A, Masse JM, Guichard J, Cramer EM (2002) Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartment and is enhanced by platelet activation. Blood 99:4021–4029

    Article  CAS  PubMed  Google Scholar 

  5. McMorran BJ, Marshall VM, de Graaf C, Drysdale KE, Shabbar M, Smyth GK, Corbin JE, Alexander WS, Foote SJ (2009) Platelets kill intraerythrocytic malarial parasites and mediate survival to infection. Science 323:797–800

    Article  CAS  PubMed  Google Scholar 

  6. Wong CH, Jenne CN, Petri B, Chrobok NL, Kubes P (2013) Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance. Nat Immunol 14:785–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, Keys EM, Allen-Vercoe E, Devinney R, Doig CJ, Green FH, Kubes P (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13:463–469

    Article  CAS  PubMed  Google Scholar 

  8. Sreeramkumar V, Adrover JM, Ballesteros I, Cuartero MI, Rossaint J, Bilbao I, Nacher M, Pitaval C, Radovanovic I, Fukui Y, McEver RP, Filippi MD, Lizasoain I, Ruiz-Cabello J, Zarbock A, Moro MA, Hidalgo A (2014) Neutrophils scan for activated platelets to initiate inflammation. Science 346:1234–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME, Massarotti EM, Remold-O’Donnell E, Farndale RW, Ware J, Lee DM (2010) Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327:580–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Janeway CA Jr (1992) The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13:11–16

    Article  CAS  PubMed  Google Scholar 

  11. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  CAS  PubMed  Google Scholar 

  12. Andonegui G, Kerfoot SM, McNagny K, Ebbert KV, Patel KD, Kubes P (2005) Platelets express functional Toll-like receptor-4. Blood 106:2417–2423

    Article  CAS  PubMed  Google Scholar 

  13. Cognasse F, Hamzeh H, Chavarin P, Acquart S, Genin C, Garraud O (2005) Evidence of Toll-like receptor molecules on human platelets. Immunol Cell Biol 83:196–198

    Article  CAS  PubMed  Google Scholar 

  14. Aslam R, Speck ER, Kim M, Crow AR, Bang KW, Nestel FP, Ni H, Lazarus AH, Freedman J, Semple JW (2006) Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo. Blood 107:637–641

    Article  CAS  PubMed  Google Scholar 

  15. Semple JW, Aslam R, Kim M, Speck ER, Freedman J (2007) Platelet-bound lipopolysaccharide enhances Fc receptor-mediated phagocytosis of IgG-opsonized platelets. Blood 109:4803–4805

    Article  CAS  PubMed  Google Scholar 

  16. Patrignani P, Di FC, Tacconelli S, Moretta V, Baccante G, Sciulli MG, Ricciotti E, Capone ML, Antonucci I, Guglielmi MD, Stuppia L, Porreca E (2006) Reduced thromboxane biosynthesis in carriers of toll-like receptor 4 polymorphisms in vivo. Blood 107:3572–3574

    Article  CAS  PubMed  Google Scholar 

  17. Stahl AL, Svensson M, Morgelin M, Svanborg C, Tarr PI, Mooney JC, Watkins SL, Johnson R, Karpman D (2006) Lipopolysaccharide from enterohemorrhagic Escherichia coli binds to platelets through TLR4 and CD62 and is detected on circulating platelets in patients with hemolytic uremic syndrome. Blood 108:167–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang G, Han J, Welch EJ, Ye RD, Voyno-Yasenetskaya TA, Malik AB, Du X, Li Z (2009) Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J Immunol 182:7997–8004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Blair P, Rex S, Vitseva O, Beaulieu L, Tanriverdi K, Chakrabarti S, Hayashi C, Genco CA, Iafrati M, Freedman JE (2009) Stimulation of Toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase. Circ Res 104:346–354

    Article  CAS  PubMed  Google Scholar 

  20. Assinger A, Laky M, Badrnya S, Esfandeyari A, Volf I (2012) Periodontopathogens induce expression of CD40L on human platelets via TLR2 and TLR4. Thromb Res 130:e73–e78

    Article  CAS  PubMed  Google Scholar 

  21. Anabel AS, Eduardo PC, Pedro Antonio HC, Carlos SM, Juana NM, Honorio TA, Nicolas VS, Sergio Roberto AR (2014) Human platelets express toll-like receptor 3 and respond to poly I:C. Hum Immunol 75:1244–1251

    Article  CAS  PubMed  Google Scholar 

  22. Koupenova M, Vitseva O, MacKay CR, Beaulieu LM, Benjamin EJ, Mick E, Kurt-Jones EA, Ravid K, Freedman JE (2014) Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood 124:791–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Panigrahi S, Ma Y, Hong L, Gao D, West XZ, Salomon RG, Byzova TV, Podrez EA (2013) Engagement of platelet toll-like receptor 9 by novel endogenous ligands promotes platelet hyperreactivity and thrombosis. Circ Res 112:103–112

    Article  CAS  PubMed  Google Scholar 

  24. Stohlawetz P, Folman CC, von dem Borne AE, Pernerstorfer T, Eichler HG, Panzer S, Jilma B (1999) Effects of endotoxemia on thrombopoiesis in men. Thromb Haemost 81:613–617

    CAS  PubMed  Google Scholar 

  25. Pick M, Perry C, Lapidot T, Guimaraes-Sternberg C, Naparstek E, Deutsch V, Soreq H (2006) Stress-induced cholinergic signaling promotes inflammation-associated thrombopoiesis. Blood 107:3397–3406

    Article  CAS  PubMed  Google Scholar 

  26. Jayachandran M, Brunn GJ, Karnicki K, Miller RS, Owen WG, Miller VM (2007) In vivo effects of lipopolysaccharide and TLR4 on platelet production and activity: implications for thrombotic risk. J Appl Physiol (1985) 102:429–433

    Article  CAS  Google Scholar 

  27. Flaujac C, Boukour S, Cramer-Borde E (2010) Platelets and viruses: an ambivalent relationship. Cell Mol Life Sci 67:545–556

    Article  CAS  PubMed  Google Scholar 

  28. Assinger A (2014) Platelets and infection – an emerging role of platelets in viral infection. Front Immunol 5:649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Yeaman MR (2010) Bacterial-platelet interactions: virulence meets host defense. Future Microbiol 5:471–506

    Article  CAS  PubMed  Google Scholar 

  30. Yeaman MR (2010) Platelets in defense against bacterial pathogens. Cell Mol Life Sci 67:525–544

    Article  CAS  PubMed  Google Scholar 

  31. Kerrigan SW, Cox D (2010) Platelet-bacterial interactions. Cell Mol Life Sci 67:513–523

    Article  CAS  PubMed  Google Scholar 

  32. Aiolfi R, Sitia G (2015) Chronic hepatitis B: role of anti-platelet therapy in inflammation control. Cell Mol Immunol 12:264–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kraemer BF, Campbell RA, Schwertz H, Cody MJ, Franks Z, Tolley ND, Kahr WH, Lindemann S, Seizer P, Yost CC, Zimmerman GA, Weyrich AS (2011) Novel anti-bacterial activities of beta-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation. PLoS Pathog 7, e1002355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 107:15880–15885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thomas GM, Carbo C, Curtis BR, Martinod K, Mazo IB, Schatzberg D, Cifuni SM, Fuchs TA, von Andrian UH, Hartwig JH, Aster RH, Wagner DD (2012) Extracellular DNA traps are associated with the pathogenesis of TRALI in humans and mice. Blood 119:6335–6343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Demers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR, Fuchs TA, Scadden DT, Wagner DD (2012) Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A 109:13076–13081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fuchs TA, Alvarez JJ, Martinod K, Bhandari AA, Kaufman RM, Wagner DD (2013) Neutrophils release extracellular DNA traps during storage of red blood cell units. Transfusion 53:3210–3216

    Article  CAS  PubMed  Google Scholar 

  38. Chen G, Zhang D, Fuchs TA, Manwani D, Wagner DD, Frenette PS (2014) Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood 123:3818–3827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Caudrillier A, Kessenbrock K, Gilliss BM, Nguyen JX, Marques MB, Monestier M, Toy P, Werb Z, Looney MR (2012) Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest 122:2661–2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wong SL, Demers M, Martinod K, Gallant M, Wang Y, Goldfine AB, Kahn CR, Wagner DD (2015) Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med 21:815–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. de Stoppelaar SF, Van V, van der Poll T (2014) The role of platelets in sepsis. Thromb Haemost 112:666–677

    Article  PubMed  Google Scholar 

  42. Gawaz M, Dickfeld T, Bogner C, Fateh-Moghadam S, Neumann FJ (1997) Platelet function in septic multiple organ dysfunction syndrome. Intensive Care Med 23:379–385

    Article  CAS  PubMed  Google Scholar 

  43. Russwurm S, Vickers J, Meier-Hellmann A, Spangenberg P, Bredle D, Reinhart K, Losche W (2002) Platelet and leukocyte activation correlate with the severity of septic organ dysfunction. Shock 17:263–268

    Article  PubMed  Google Scholar 

  44. Washington AV, Gibot S, Acevedo I, Gattis J, Quigley L, Feltz R, De La Mota A, Schubert RL, Gomez-Rodriguez J, Cheng J, Dutra A, Pak E, Chertov O, Rivera L, Morales J, Lubkowski J, Hunter R, Schwartzberg PL, McVicar DW (2009) TREM-like transcript-1 protects against inflammation-associated hemorrhage by facilitating platelet aggregation in mice and humans. J Clin Invest 119:1489–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. de Stoppelaar SF, Van’t Veer C, van den Boogaard FE, Nieuwland R, Hoogendijk AJ, de Boer OJ, Roelofs JJ, van der Poll T (2013) Protease activated receptor 4 limits bacterial growth and lung pathology during late stage Streptococcus pneumoniae induced pneumonia in mice. Thromb Haemost 110:582–592

    Article  PubMed  CAS  Google Scholar 

  46. Etulain J, Martinod K, Wong SL, Cifuni SM, Schattner M, Wagner DD (2015) P-selectin promotes neutrophil extracellular trap formation in mice. Blood 126:242–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dankert J, van der Werff J, Zaat SA, Joldersma W, Klein D, Hess J (1995) Involvement of bactericidal factors from thrombin-stimulated platelets in clearance of adherent viridans streptococci in experimental infective endocarditis. Infect Immun 63:663–671

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Assinger A, Laky M, Schabbauer G, Hirschl AM, Buchberger E, Binder BR, Volf I (2011) Efficient phagocytosis of periodontopathogens by neutrophils requires plasma factors, platelets and TLR2. J Thromb Haemost 9:799–809

    Article  CAS  PubMed  Google Scholar 

  49. McMorran BJ, Wieczorski L, Drysdale KE, Chan JA, Huang HM, Smith C, Mitiku C, Beeson JG, Burgio G, Foote SJ (2012) Platelet factor 4 and Duffy antigen required for platelet killing of Plasmodium falciparum. Science 338:1348–1351

    Article  CAS  PubMed  Google Scholar 

  50. Cines DB, Cuker A, Semple JW (2014) Pathogenesis of immune thrombocytopenia. Presse Med 43:e49–e59

    Article  PubMed  Google Scholar 

  51. Zhang W, Nardi MA, Borkowsky W, Li Z, Karpatkin S (2009) Role of molecular mimicry of hepatitis C virus protein with platelet GPIIIa in hepatitis C-related immunologic thrombocytopenia. Blood 113:4086–4093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wright JF, Blanchette VS, Wang H, Arya N, Petric M, Semple JW, Chia WK, Freedman J (1996) Characterization of platelet-reactive antibodies in children with varicella-associated acute immune thrombocytopenic purpura (ITP). Br J Haematol 95:145–152

    Article  CAS  PubMed  Google Scholar 

  53. Takahashi T, Yujiri T, Shinohara K, Inoue Y, Sato Y, Fujii Y, Okubo M, Zaitsu Y, Ariyoshi K, Nakamura Y, Nawata R, Oka Y, Shirai M, Tanizawa Y (2004) Molecular mimicry by Helicobacter pylori CagA protein may be involved in the pathogenesis of H. pylori-associated chronic idiopathic thrombocytopenic purpura. Br J Haematol 124:91–96

    Article  CAS  PubMed  Google Scholar 

  54. Li Z, Nardi MA, Karpatkin S (2005) Role of molecular mimicry to HIV-1 peptides in HIV-1-related immunologic thrombocytopenia. Blood 106:572–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chia WK, Blanchette V, Mody M, Wright JF, Freedman J (1998) Characterization of HIV-1-specific antibodies and HIV-1-crossreactive antibodies to platelets in HIV-1-infected haemophiliac patients. Br J Haematol 103:1014–1022

    Article  CAS  PubMed  Google Scholar 

  56. Asahi A, Nishimoto T, Okazaki Y, Suzuki H, Masaoka T, Kawakami Y, Ikeda Y, Kuwana M (2008) Helicobacter pylori eradication shifts monocyte Fcgamma receptor balance toward inhibitory FcgammaRIIB in immune thrombocytopenic purpura patients. J Clin Invest 118:2939–2949

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tremblay T, Aubin E, Lemieux R, Bazin R (2007) Picogram doses of lipopolysaccharide exacerbate antibody-mediated thrombocytopenia and reduce the therapeutic efficacy of intravenous immunoglobulin in mice. Br J Haematol 139:297–302

    Article  CAS  PubMed  Google Scholar 

  58. Kapur R, Heitink-Polle KM, Porcelijn L, Bentlage AE, Bruin MC, Visser R, Roos D, Schasfoort RB, de Hass M, van der Schoot CE, Vidarsson G (2015) C-reactive protein enhances IgG-mediated phagocyte responses and thrombocytopenia. Blood 125:1793–1802

    Article  CAS  PubMed  Google Scholar 

  59. Grewal IS, Flavell RA (1998) CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 16:111–135

    Article  CAS  PubMed  Google Scholar 

  60. Henn V, Steinbach S, Buchner K, Presek P, Kroczek RA (2001) The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD40. Blood 98:1047–1054

    Article  CAS  PubMed  Google Scholar 

  61. Andre P, Nannizzi-Alaimo L, Prasad SK, Phillips DR (2002) Platelet-derived CD40L: the switch-hitting player of cardiovascular disease. Circulation 106:896–899

    Article  PubMed  Google Scholar 

  62. Hammwohner M, Ittenson A, Dierkes J, Bukowska A, Klein HU, Lendeckel U, Goette A (2007) Platelet expression of CD40/CD40 ligand and its relation to inflammatory markers and adhesion molecules in patients with atrial fibrillation. Exp Biol Med (Maywood) 232:581–589

    Google Scholar 

  63. Anand SX, Viles-Gonzalez JF, Badimon JJ, Cavusoglu E, Marmur JD (2003) Membrane-associated CD40L and sCD40L in atherothrombotic disease. Thromb Haemost 90:377–384

    CAS  PubMed  Google Scholar 

  64. Elzey BD, Schmidt NW, Crist SA, Kresowik TP, Harty JT, Nieswandt B, Ratliff TL (2008) Platelet-derived CD154 enables T-cell priming and protection against Listeria monocytogenes challenge. Blood 111:3684–3691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Iannacone M, Sitia G, Isogawa M, Marchese P, Castro MG, Lowenstein PR, Chisari FV, Ruggeri ZM, Guidotti LG (2005) Platelets mediate cytotoxic T lymphocyte-induced liver damage. Nat Med 11:1167–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kissel K, Berber S, Nockher A, Santoso S, Bein G, Hackstein H (2006) Human platelets target dendritic cell differentiation and production of proinflammatory cytokines. Transfusion 46:818–827

    Article  CAS  PubMed  Google Scholar 

  67. Diacovo TG, Catalina MD, Siegelman MH, von Andrian UH (1998) Circulating activated platelets reconstitute lymphocyte homing and immunity in L-selectin-deficient mice. J Exp Med 187:197–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Diacovo TG, Puri KD, Warnock RA, Springer TA, von Andrian UH (1996) Platelet-mediated lymphocyte delivery to high endothelial venules. Science 273:252–255

    Article  CAS  PubMed  Google Scholar 

  69. von Hundelshausen P, Weber C (2007) Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res 100:27–40

    Article  CAS  Google Scholar 

  70. Elzey BD, Tian J, Jensen RJ, Swanson AK, Lees JR, Lentz SR, Stein CS, Nieswandt B, Wang Y, Davidson BL, Ratliff TL (2003) Platelet-mediated modulation of adaptive immunity. A communication link between innate and adaptive immune compartments. Immunity 19:9–19

    Article  CAS  PubMed  Google Scholar 

  71. Hachem A, Yacoub D, Zaid Y, Mourad W, Merhi Y (2012) Involvement of nuclear factor kappaB in platelet CD40 signaling. Biochem Biophys Res Commun 425:58–63

    Article  CAS  PubMed  Google Scholar 

  72. Malaver E, Romaniuk MA, D’Atri LP, Pozner RG, Negrotto S, Benzadon R, Schattner M (2009) NF-kappaB inhibitors impair platelet activation responses. J Thromb Haemost 7:1333–1343

    Article  CAS  PubMed  Google Scholar 

  73. Spinelli SL, Casey AE, Pollock SJ, Gertz JM, McMillan DH, Narasipura SD, Mody NA, King MR, Maggirwar SB, Francis CW, Taubman MB, Blumberg N, Phipps RP (2010) Platelets and megakaryocytes contain functional nuclear factor-kappaB. Arterioscler Thromb Vasc Biol 30:591–598

    Article  CAS  PubMed  Google Scholar 

  74. Gambaryan S, Kobsar A, Rukoyatkina N, Herterich S, Geiger J, Smolenski A, Lohmann SM, Walter U (2010) Thrombin and collagen induce a feedback inhibitory signaling pathway in platelets involving dissociation of the catalytic subunit of protein kinase A from an NFkappaB-IkappaB complex. J Biol Chem 285:18352–18363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Karim ZA, Zhang J, Banerjee M, Chicka MC, Al HR, Hamilton TR, Roche PA, Whiteheart SW (2013) IkappaB kinase phosphorylation of SNAP-23 controls platelet secretion. Blood 121:4567–4574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu F, Morris S, Epps J, Carroll R (2002) Demonstration of an activation regulated NF-kappaB/I-kappaBalpha complex in human platelets. Thromb Res 106:199–203

    Article  CAS  PubMed  Google Scholar 

  77. Mazzucco L, Borzini P, Gope R (2010) Platelet-derived factors involved in tissue repair-from signal to function. Transfus Med Rev 24:218–234

    Article  PubMed  Google Scholar 

  78. Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB (1983) Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem 258:7155–7160

    CAS  PubMed  Google Scholar 

  79. Andersson PO, Stockelberg D, Jacobsson S, Wadenvik H (2000) A transforming growth factor-beta1-mediated bystander immune suppression could be associated with remission of chronic idiopathic thrombocytopenic purpura. Ann Hematol 79:507–513

    Article  CAS  PubMed  Google Scholar 

  80. Andersson PO, Olsson A, Wadenvik H (2002) Reduced transforming growth factor-beta1 production by mononuclear cells from patients with active chronic idiopathic thrombocytopenic purpura. Br J Haematol 116:862–867

    Article  CAS  PubMed  Google Scholar 

  81. Blair P, Flaumenhaft R (2009) Platelet alpha-granules: basic biology and clinical correlates. Blood Rev 23:177–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gleissner CA (2012) Macrophage phenotype modulation by CXCL4 in Atherosclerosis. Front Physiol 3:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Petersen F, Bock L, Flad HD, Brandt E (1999) Platelet factor 4-induced neutrophil-endothelial cell interaction: involvement of mechanisms and functional consequences different from those elicited by interleukin-8. Blood 94:4020–4028

    CAS  PubMed  Google Scholar 

  84. Brandt E, Petersen F, Ludwig A, Ehlert JE, Bock L, Flad HD (2000) The beta-thromboglobulins and platelet factor 4: blood platelet-derived CXC chemokines with divergent roles in early neutrophil regulation. J Leukoc Biol 67:471–478

    Article  CAS  PubMed  Google Scholar 

  85. Alam R, Forsythe PA, Stafford S, Lett-Brown MA, Grant JA (1992) Macrophage inflammatory protein-1 alpha activates basophils and mast cells. J Exp Med 176:781–786

    Article  CAS  PubMed  Google Scholar 

  86. Schall TJ, Bacon K, Camp RD, Kaspari JW, Goeddel DV (1993) Human macrophage inflammatory protein alpha (MIP-1 alpha) and MIP-1 beta chemokines attract distinct populations of lymphocytes. J Exp Med 177:1821–1826

    Article  CAS  PubMed  Google Scholar 

  87. Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13:269–288

    Article  CAS  PubMed  Google Scholar 

  88. Buzas EI, Gyorgy B, Nagy G, Falus A, Gay S (2014) Emerging role of extracellular vesicles in inflammatory diseases. Nat Rev Rheumatol 10:356–364

    Article  CAS  PubMed  Google Scholar 

  89. Lotvall J, Hill AF, Hochberg F, Buzas EI, Di VD, Gardiner C, Gho YS, Kurochkin IV, Mathivanan S, Quesenberry P, Sahoo S, Tahara H, Wauben MH, Witwer KW, Thery C (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3:26913

    Article  PubMed  Google Scholar 

  90. Arraud N, Linares R, Tan S, Gounou C, Pasquet JM, Mornet S, Brisson AR (2014) Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemost 12:614–627

    Article  CAS  PubMed  Google Scholar 

  91. Morel O, Jesel L, Freyssinet JM, Toti F (2011) Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol 31:15–26

    Article  CAS  PubMed  Google Scholar 

  92. Owens AP III, Mackman N (2011) Microparticles in hemostasis and thrombosis. Circ Res 108:1284–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tersteeg C, Heijnen HF, Eckly A, Pasterkamp G, Urbanus RT, Maas C, Hoefer IE, Nieuwland R, Farndale RW, Gachet C, de Groot PG, Roest M (2014) FLow-induced PRotrusions (FLIPRs): a platelet-derived platform for the retrieval of microparticles by monocytes and neutrophils. Circ Res 114:780–791

    Article  CAS  PubMed  Google Scholar 

  94. Connor DE, Exner T, Ma DD, Joseph JE (2010) The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib. Thromb Haemost 103:1044–1052

    Article  CAS  PubMed  Google Scholar 

  95. Perez-Pujol S, Marker PH, Key NS (2007) Platelet microparticles are heterogeneous and highly dependent on the activation mechanism: studies using a new digital flow cytometer. Cytometry A 71:38–45

    Article  PubMed  Google Scholar 

  96. Cloutier N, Tan S, Boudreau LH, Cramb C, Subbaiah R, Lahey L, Albert A, Shnayder R, Gobezie R, Nigrovic PA, Farndale RW, Robinson WH, Brisson A, Lee DM, Boilard E (2013) The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol Med 5:235–249

    Article  CAS  PubMed  Google Scholar 

  97. Nurden AT (2011) Platelets, inflammation and tissue regeneration. Thromb Haemost 105(Suppl 1):S13–S33

    Article  CAS  PubMed  Google Scholar 

  98. Reid VL, Webster NR (2012) Role of microparticles in sepsis. Br J Anaesth 109:503–513

    Article  CAS  PubMed  Google Scholar 

  99. Gyorgy B, Szabo TG, Turiak L, Wright M, Herczeg P, Ledeczi Z, Kittel A, Polgar A, Toth K, Derfalvi B, Zelenak G, Borocz I, Carr B, Nagy G, Vekey K, Gay S, Falus A, Buzas EI (2012) Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle) signatures in joint diseases. PLoS One 7, e49726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rousseau M, Belleannee C, Duchez AC, Cloutier N, Levesque T, Jacques F, Perron J, Nigrovic PA, Dieude M, Hebert MJ, Gelb MH, Boilard E (2015) Detection and quantification of microparticles from different cellular lineages using flow cytometry. Evaluation of the impact of secreted phospholipase A2 on microparticle assessment. PLoS One 10:e0116812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Gitz E, Pollitt AY, Gitz-Francois JJ, Alshehri O, Mori J, Montague S, Nash GB, Douglas MR, Gardiner EE, Andrews RK, Buckley CD, Harrison P, Watson SP (2014) CLEC-2 expression is maintained on activated platelets and on platelet microparticles. Blood 124:2262–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Boilard E, Blanco P, Nigrovic PA (2012) Platelets: active players in the pathogenesis of arthritis and SLE. Nat Rev Rheumatol 8:534–542

    Article  CAS  PubMed  Google Scholar 

  103. Mott PJ, Lazarus AH (2013) CD44 antibodies and immune thrombocytopenia in the amelioration of murine inflammatory arthritis. PLoS One 8, e65805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Brown GT, McIntyre TM (2011) Lipopolysaccharide signaling without a nucleus: kinase cascades stimulate platelet shedding of proinflammatory IL-1beta-rich microparticles. J Immunol 186:5489–5496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Boilard E, Pare G, Rousseau M, Cloutier N, Dubuc I, Levesque T, Borgeat P, Flamand L (2014) Influenza virus H1N1 activates platelets through FcgammaRIIA signaling and thrombin generation. Blood 123:2854–2863

    Article  CAS  PubMed  Google Scholar 

  106. Sun D, Popescu NI, Raisley B, Keshari RS, Dale GL, Lupu F, Coggeshall KM (2013) Bacillus anthracis peptidoglycan activates human platelets through FcgammaRII and complement. Blood 122:571–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Laffont B, Corduan A, Ple H, Duchez AC, Cloutier N, Boilard E, Provost P (2013) Activated platelets can deliver mRNA regulatory Ago2*microRNA complexes to endothelial cells via microparticles. Blood 122:253–261

    Article  CAS  PubMed  Google Scholar 

  108. Boudreau LH, Duchez AC, Cloutier N, Soulet D, Martin N, Bollinger J, Pare A, Rousseau M, Naika GS, Levesque T, Laflamme C, Marcoux G, Lambeau G, Farndale RW, Pouliot M, Hamzeh-Cognasse H, Cognasse F, Garraud O, Nigrovic PA, Guderley H, Lacroix S, Thibault L, Semple JW, Gelb MH, Boilard E (2014) Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood 124:2173–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ray DM, Spinelli SL, Pollock SJ, Murant TI, O’Brien JJ, Blumberg N, Francis CW, Taubman MB, Phipps RP (2008) Peroxisome proliferator-activated receptor gamma and retinoid X receptor transcription factors are released from activated human platelets and shed in microparticles. Thromb Haemost 99:86–95

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Garcia BA, Smalley DM, Cho H, Shabanowitz J, Ley K, Hunt DF (2005) The platelet microparticle proteome. J Proteome Res 4:1516–1521

    Article  CAS  PubMed  Google Scholar 

  111. Dasgupta SK, Abdel-Monem H, Niravath P, Le A, Bellera RV, Langlois K, Nagata S, Rumbaut RE, Thiagarajan P (2009) Lactadherin and clearance of platelet-derived microvesicles. Blood 113:1332–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dasgupta SK, Le A, Chavakis T, Rumbaut RE, Thiagarajan P (2012) Developmental endothelial locus-1 (Del-1) mediates clearance of platelet microparticles by the endothelium. Circulation 125:1664–1672

    Article  CAS  PubMed  Google Scholar 

  113. Italiano JE Jr, Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S, Ryeom S, Folkman J, Klement GL (2008) Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 111:1227–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sehgal S, Storrie B (2007) Evidence that differential packaging of the major platelet granule proteins von Willebrand factor and fibrinogen can support their differential release. J Thromb Haemost 5:2009–2016

    Article  CAS  PubMed  Google Scholar 

  115. White GC, Rompietti R (2007) Platelet secretion: indiscriminately spewed forth or highly orchestrated? J Thromb Haemost 5:2006–2008

    Article  CAS  PubMed  Google Scholar 

  116. Rowley JW, Oler AJ, Tolley ND, Hunter BN, Low EN, Nix DA, Yost CC, Zimmerman GA, Weyrich AS (2011) Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood 118:e101–e111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rowley JW, Schwertz H, Weyrich AS (2012) Platelet mRNA: the meaning behind the message. Curr Opin Hematol 19:385–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lood C, Amisten S, Gullstrand B, Jonsen A, Allhorn M, Truedsson L, Sturfelt G, Erlinge D, Bengtsson AA (2010) Platelet transcriptional profile and protein expression in patients with systemic lupus erythematosus: up-regulation of the type I interferon system is strongly associated with vascular disease. Blood 116:1951–1957

    Article  CAS  PubMed  Google Scholar 

  119. Healy AM, Pickard MD, Pradhan AD, Wang Y, Chen Z, Croce K, Sakuma M, Shi C, Zago AC, Garasic J, Damokosh AI, Dowie TL, Poisson L, Lillie J, Libby P, Ridker PM, Simon DI (2006) Platelet expression profiling and clinical validation of myeloid-related protein-14 as a novel determinant of cardiovascular events. Circulation 113:2278–2284

    Article  CAS  PubMed  Google Scholar 

  120. Goodall AH, Burns P, Salles I, Macaulay IC, Jones CI, Ardissino D, de Bono B, Bray SL, Deckmyn H, Dudbridge F, Fitzgerald DJ, Garner SF, Gusnanto A, Koch K, Langford C, O’Connor MN, Rice CM, Stemple D, Stephens J, Trip MD, Zwaginga JJ, Samani NJ, Watkins NA, Maguire PB, Ouwehand WH (2010) Transcription profiling in human platelets reveals LRRFIP1 as a novel protein regulating platelet function. Blood 116:4646–4656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Simon LM, Edelstein LC, Nagalla S, Woodley AB, Chen ES, Kong X, Ma L, Fortina P, Kunapuli S, Holinstat M, McKenzie SE, Dong JF, Shaw CA, Bray PF (2014) Human platelet microRNA-mRNA networks associated with age and gender revealed by integrated plateletomics. Blood 123:e37–e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Edelstein LC, Simon LM, Montoya RT, Holinstat M, Chen ES, Bergeron A, Kong X, Nagalla S, Mohandas N, Cohen DE, Dong JF, Shaw C, Bray PF (2013) Racial differences in human platelet PAR4 reactivity reflect expression of PCTP and miR-376c. Nat Med 19:1609–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ple H, Maltais M, Corduan A, Rousseau G, Madore F, Provost P (2012) Alteration of the platelet transcriptome in chronic kidney disease. Thromb Haemost 108:605–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. McManus DD, Beaulieu LM, Mick E, Tanriverdi K, Larson MG, Keaney JF Jr, Benjamin EJ, Freedman JE (2013) Relationship among circulating inflammatory proteins, platelet gene expression, and cardiovascular risk. Arterioscler Thromb Vasc Biol 33:2666–2673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Freedman JE, Larson MG, Tanriverdi K, O’Donnell CJ, Morin K, Hakanson AS, Vasan RS, Johnson AD, Iafrati MD, Benjamin EJ (2010) Relation of platelet and leukocyte inflammatory transcripts to body mass index in the Framingham heart study. Circulation 122:119–129

    Article  PubMed  PubMed Central  Google Scholar 

  126. Raghavachari N, Xu X, Harris A, Villagra J, Logun C, Barb J, Solomon MA, Suffredini AF, Danner RL, Kato G, Munson PJ, Morris SM Jr, Gladwin MT (2007) Amplified expression profiling of platelet transcriptome reveals changes in arginine metabolic pathways in patients with sickle cell disease. Circulation 115:1551–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Risitano A, Beaulieu LM, Vitseva O, Freedman JE (2012) Platelets and platelet-like particles mediate intercellular RNA transfer. Blood 119:6288–6295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Clancy L, Freedman JE (2014) New paradigms in thrombosis: novel mediators and biomarkers platelet RNA transfer. J Thromb Thrombolysis 37:12–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gidlof O, van der Brug M, Ohman J, Gilje P, Olde B, Wahlestedt C, Erlinge D (2013) Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood 121:3908–3926

    Article  PubMed  CAS  Google Scholar 

  130. Landry P, Plante I, Ouellet DL, Perron MP, Rousseau G, Provost P (2009) Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol 16:961–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rondina MT, Weyrich AS (2015) Regulation of the genetic code in megakaryocytes and platelets. J Thromb Haemost 13(Suppl 1):S26–S32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Burkhart JM, Vaudel M, Gambaryan S, Radau S, Walter U, Martens L, Geiger J, Sickmann A, Zahedi RP (2012) The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 120:e73–e82

    Article  CAS  PubMed  Google Scholar 

  133. Schubert S, Weyrich AS, Rowley JW (2014) A tour through the transcriptional landscape of platelets. Blood 124:493–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Shulman NR, Aster RH, Pearson HA, Hiller MC (1962) Immunoreactions involving platelet. VI. Reactions of maternal isoantibodies responsible for neonatal purpura. Differentiation of a second platelet antigen system. J Clin Invest 41:1059–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Blumberg N, Masel D, Mayer T, Horan P, Heal J (1984) Removal of HLA-A, B antigens from platelets. Blood 63:448–450

    CAS  PubMed  Google Scholar 

  136. Kao KJ, Cook DJ, Scornik JC (1986) Quantitative analysis of platelet surface HLA by W6/32 anti-HLA monoclonal antibody. Blood 68:627–632

    CAS  PubMed  Google Scholar 

  137. Kao KJ (1987) Plasma and platelet HLA in normal individuals: quantitation by competitive enzyme-linked immunoassay. Blood 70:282–286

    CAS  PubMed  Google Scholar 

  138. Kao KJ (1988) Selective elution of HLA antigens and beta 2-microglobulin from human platelets by chloroquine diphosphate. Transfusion 28:14–17

    Article  CAS  PubMed  Google Scholar 

  139. Neumuller J, Tohidast-Akrad M, Fischer M, Mayr WR (1993) Influence of chloroquine or acid treatment of human platelets on the antigenicity of HLA and the ‘thrombocyte-specific’ glycoproteins Ia/IIa, IIb, and IIb/IIIa. Vox Sang 65:223–231

    CAS  PubMed  Google Scholar 

  140. Ghio M, Contini P, Mazzei C, Brenci S, Barberis G, Filaci G, Indiveri F, Puppo F (1999) Soluble HLA class I, HLA class II, and Fas ligand in blood components: a possible key to explain the immunomodulatory effects of allogeneic blood transfusions. Blood 93:1770–1777

    CAS  PubMed  Google Scholar 

  141. Gouttefangeas C, Diehl M, Keilholz W, Hornlein RF, Stevanovic S, Rammensee HG (2000) Thrombocyte HLA molecules retain nonrenewable endogenous peptides of megakaryocyte lineage and do not stimulate direct allocytotoxicity in vitro. Blood 95:3168–3175

    CAS  PubMed  Google Scholar 

  142. Aslam R, Speck ER, Kim M, Freedman J, Semple JW (2008) Transfusion-related immunomodulation by platelets is dependent on their expression of MHC class I molecules and is independent of white cells. Transfusion 48:1778–1786

    Article  PubMed  Google Scholar 

  143. Zufferey A, Schvartz D, Nolli S, Reny JL, Sanchez JC, Fontana P (2014) Characterization of the platelet granule proteome: evidence of the presence of MHC1 in alpha-granules. J Proteomics 101:130–140

    Article  CAS  PubMed  Google Scholar 

  144. Chapman LM, Aggrey AA, Field DJ, Srivastava K, Ture S, Yui K, Topham DJ, Baldwin WM III, Morrell CN (2012) Platelets present antigen in the context of MHC class I. J Immunol 189:916–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Semple .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kapur, R., Semple, J.W. (2016). Platelet Functions Beyond Hemostasis. In: Schulze, H., Italiano, J. (eds) Molecular and Cellular Biology of Platelet Formation. Springer, Cham. https://doi.org/10.1007/978-3-319-39562-3_10

Download citation

Publish with us

Policies and ethics