Skip to main content

Emerging Therapies for Progressive Metastatic Medullary Thyroid Cancer

  • Chapter
  • First Online:
Medullary Thyroid Cancer

Abstract

Targeted therapy in progressive metastatic medullary thyroid cancer (MTC) with current FDA-approved agents, vandetanib and cabozantinib, is associated with improved progression-free survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elisei R, Schlumberger MJ, Muller SP, et al. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol. 2013;31:3639–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wells SA Jr, Robinson BG, Gagel RF, et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol. 2012;30:134–41.

    Article  CAS  PubMed  Google Scholar 

  3. Orlandi F, Caraci P, Berruti A, et al. Chemotherapy with dacarbazine and 5-fluorouracil in advanced medullary thyroid cancer. Ann Oncol. 1994;5:763–5.

    CAS  PubMed  Google Scholar 

  4. Food and Drug Administration. CDER clinical pharmacology and biopharmaceutics review[s] for cabozantinib [COMETRIQ], 2012.

    Google Scholar 

  5. Carlomagno F, Guida T, Anaganti S, et al. Disease associated mutations at valine 804 in the RET receptor tyrosine kinase confer resistance to selective kinase inhibitors. Oncogene. 2004;23:6056–63.

    Article  CAS  PubMed  Google Scholar 

  6. Mologni L, Redaelli S, Morandi A, et al. Ponatinib is a potent inhibitor of wild-type and drug-resistant gatekeeper mutant RET kinase. Mol Cell Endocrinol. 2013;377:1–6.

    Article  CAS  PubMed  Google Scholar 

  7. Cote GJ, Grubbs E, Hofmann MC. Thyroid C-cell biology and oncogenic transformation. In: Raue F, editor. Medullary thyroid carcinoma: Biology—Management—Treatment. Springer International Publishing; 2015 (in press).

    Google Scholar 

  8. Mian C, Pennelli G, Barollo S, et al. Combined RET and Ki-67 assessment in sporadic medullary thyroid carcinoma: a useful tool for patient risk stratification. Eur J Endocrinol. 2011;164:971–6.

    Article  CAS  PubMed  Google Scholar 

  9. Elisei R, Cosci B, Romei C, et al. Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab. 2008;93:682–7.

    Article  CAS  PubMed  Google Scholar 

  10. Moura MM, Cavaco BM, Leite V. RAS proto-oncogene in medullary thyroid carcinoma. Endocr Relat Cancer. 2015;22:R235–52.

    Article  CAS  PubMed  Google Scholar 

  11. Hong DS, Cabanillas ME, Wheler J, et al. Inhibition of the Ras/Raf/MEK/ERK and RET kinase pathways with the combination of the multikinase inhibitor sorafenib and the farnesyltransferase inhibitor tipifarnib in medullary and differentiated thyroid malignancies. J Clin Endocrinol Metab. 2011;96:997–1005.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rapa I, Saggiorato E, Giachino D, et al. Mammalian target of rapamycin pathway activation is associated to RET mutation status in medullary thyroid carcinoma. J Clin Endocrinol Metab. 2011;96:2146–53.

    Article  CAS  PubMed  Google Scholar 

  13. Lyra J, Vinagre J, Batista R, et al. mTOR activation in medullary thyroid carcinoma with RAS mutation. Eur J Endocrinol. 2014;171:633–40.

    Article  CAS  PubMed  Google Scholar 

  14. Tamburrino A, Molinolo AA, Salerno P, et al. Activation of the mTOR pathway in primary medullary thyroid carcinoma and lymph node metastases. Clin Cancer Res. 2012;18:3532–40.

    Article  CAS  PubMed  Google Scholar 

  15. Manfredi GI, Dicitore A, Gaudenzi G, et al. PI3K/Akt/mTOR signaling in medullary thyroid cancer: a promising molecular target for cancer therapy. Endocrine. 2015;48:363–70.

    Article  CAS  PubMed  Google Scholar 

  16. Sherman E, Ho A, Fury M, et al. Combination of everolimus and sorafenib in the treatment of thyroid cancer: update on phase II study. J Clin Oncol. 2015;33.

    Google Scholar 

  17. van Veelen W, Klompmaker R, Gloerich M, et al. P18 is a tumor suppressor gene involved in human medullary thyroid carcinoma and pheochromocytoma development. Int J Cancer. 2009;124:339–45.

    Article  PubMed  Google Scholar 

  18. Bagheri-Yarmand R, Sinha KM, Gururaj AE, et al. A novel dual kinase function of the RET proto-oncogene negatively regulates activating transcription factor 4-mediated apoptosis. J Biol Chem. 2015;290:11749–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dadu R, Rodriguez J, Wistuba I, et al. Immune markers in medullary thyroid cancer (MTC) and their clinical significance. Paper presented at the International Thyroid Congress, Orlando, FL, 2015.

    Google Scholar 

  20. Sherman SI. Lessons learned and questions unanswered from use of multitargeted kinase inhibitors in medullary thyroid cancer. Oral Oncol. 2013;49:707–10.

    Article  CAS  PubMed  Google Scholar 

  21. Hu MI, Ying AK, Jimenez C. Update on medullary thyroid cancer. Endocrinol Metab Clin North Am. 2014;43:423–42.

    Article  PubMed  Google Scholar 

  22. Capp C, Wajner SM, Siqueira DR, et al. Increased expression of vascular endothelial growth factor and its receptors, VEGFR-1 and VEGFR-2, in medullary thyroid carcinoma. Thyroid. 2010;20:863–71.

    Article  CAS  PubMed  Google Scholar 

  23. Rodriguez-Antona C, Pallares J, Montero-Conde C, et al. Overexpression and activation of EGFR and VEGFR2 in medullary thyroid carcinomas is related to metastasis. Endocr Relat Cancer. 2010;17:7–16.

    Article  CAS  PubMed  Google Scholar 

  24. Sherman SI, Cohen EE, Schoffski P, et al. Efficacy of cabozantinib (Cabo) in medullary thyroid cancer (MTC) patients with RAS or RET mutations: results from a phase III study. J Clin Oncol. 2013;31.

    Google Scholar 

  25. Schlumberger M, Elisei R, Muller SP, et al. Final overall survival analysis of EXAM, an international, double-blind, randomized, placebo-controlled phase III trial of cabozantinib (Cabo) in medullary thyroid carcinoma (MTC) patients with documented RECIST progression at baseline. J Clin Oncol. 2015;33.

    Google Scholar 

  26. De Falco V, Buonocore P, Muthu M, et al. Ponatinib (AP24534) is a novel potent inhibitor of oncogenic RET mutants associated with thyroid cancer. J Clin Endocrinol Metab. 2013;98:E811–9.

    Article  PubMed  Google Scholar 

  27. NCI: A Phase II Study of Ponatinib in Advanced or Metastatic Medullary Thyroid Cancer. In: clinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000 (cited 28 Aug 2015). Available from: https://clinicaltrials.gov/ct2/show/study/NCT01838642?view=record. NLM identifier: NCT01838642.

  28. Schlumberger M, Tahara M, Wirth LJ, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372:621–30.

    Article  PubMed  Google Scholar 

  29. Takahashi S, Tahara M, Kiyota N, et al: Phase II study of lenvatinib (len), a multi-targeted tyrosine kinase inhibitor, in patients (pts) with all histologic subtypes of advanced thyroid cancer (differentiated, medullary, and anaplastic). Ann Oncol. 2014;25:iv340–56.

    Google Scholar 

  30. Schlumberger M, Jarzab B, Cabanillas ME, et al. A Phase 2 trial of the multi-targeted tyrosine kinase inhibitor lenvatinib (E7080) in advanced medullary thyroid cancer (MTC). Clin Cancer Res. 2015.

    Google Scholar 

  31. Carr LL, Mankoff DA, Goulart BH, et al. Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin Cancer Res. 2010;16:5260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. De Souza JA, Busaidy N, Zimrin A, et al. Phase II trial of sunitinib in medullary thyroid cancer (MTC). J Clin Oncol. 2010;28:suppl;abstr 5504.

    Google Scholar 

  33. Richeldi L, du Bois RM, Raghu G, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2071–82.

    Article  PubMed  Google Scholar 

  34. Hilberg F, Roth GJ, Krssak M, et al. BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res. 2008;68:4774–82.

    Article  CAS  PubMed  Google Scholar 

  35. EORTC: Nintedanib(BIBF1120) in Thyroid Cancer, pp In: ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000-(cited 28 Aug). Available from: https://clinicaltrials.gov/ct2/show/NCT01788982. NLM identifier: NCT01788982.

  36. Bible KC, Suman VJ, Molina JR, et al. A multicenter phase 2 trial of pazopanib in metastatic and progressive medullary thyroid carcinoma: MC057H. J Clin Endocrinol Metab. 2014;99:1687–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dadu R, Devine C, Hernandez M, et al. Role of salvage targeted therapy in differentiated thyroid cancer patients who failed first-line sorafenib. J Clin Endocrinol Metab. 2014;99:2086–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weitzman SP, Peicher KT, Dadu R, et al. Salvage therapy: when a tyrosine kinase inhibitor (TKI) Fails in Advanced Medullary Thyroid Cancer (MTC). Endocr Rev. 2015;36:OR44-4.

    Google Scholar 

  39. Cleary JM, Sadow PM, Randolph GW, et al. Neoadjuvant treatment of unresectable medullary thyroid cancer with sunitinib. J Clin Oncol. 2010;28:e390–2.

    Article  PubMed  Google Scholar 

  40. Zaytseva YY, Valentino JD, Gulhati P, et al. mTOR inhibitors in cancer therapy. Cancer Lett. 2012;319:1–7.

    Article  CAS  PubMed  Google Scholar 

  41. Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009;122:3589–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Menon S, Manning BD. Common corruption of the mTOR signaling network in human tumors. Oncogene. 2008;27(Suppl 2):S43–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lorch J, Busaidy N, Ruan D, et al. A phase II study of everolimus in patients with aggressive RAI refractory (RAIR) thyroid cancer (TC). J Clin Oncol. 2013;31.

    Google Scholar 

  44. Baksh K, Weber J. Immune checkpoint protein inhibition for cancer: preclinical justification for CTLA-4 and PD-1 blockade and new combinations. Semin Oncol. 2015;42:363–77.

    Article  CAS  PubMed  Google Scholar 

  45. Bilusic M, Heery CR, Arlen PM, et al. Phase I trial of a recombinant yeast-CEA vaccine (GI-6207) in adults with metastatic CEA-expressing carcinoma. Cancer Immunol Immunother. 2014;63:225–34.

    Article  CAS  PubMed  Google Scholar 

  46. Rowinsky EK, Windle JJ, Von Hoff DD. Ras protein farnesyltransferase: a strategic target for anticancer therapeutic development. J Clin Oncol. 1999;17:3631–52.

    CAS  PubMed  Google Scholar 

  47. Lam ET, Ringel MD, Kloos RT, et al. Phase II clinical trial of sorafenib in metastatic medullary thyroid cancer. J Clin Oncol. 2010;28:2323–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Oncology K. An open label phase II study of tipifarnib in advanced non-hematological malignancies with HRAS mutations. In: clinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000-(cited 31 Aug 2015). Available from: https://clinicaltrials.gov/ct2/show/record/NCT02383927. NLM identifier: NCT02383927.

  49. Brem GJ, Mylonas I, Bruning A. Eeyarestatin causes cervical cancer cell sensitization to bortezomib treatment by augmenting ER stress and CHOP expression. Gynecol Oncol. 2013;128:383–90.

    Article  CAS  PubMed  Google Scholar 

  50. Vidula N, Rugo HS. Cyclin-Dependent Kinase 4/6 Inhibitors for the Treatment of Breast Cancer: A Review of Preclinical and Clinical Data. Clin Breast Cancer. 2015.

    Google Scholar 

  51. Desai AV, El-Bakkar H, Abdul-Hay M. Novel agents in the treatment of chronic lymphocytic leukemia: a review about the future. Clin Lymphoma Myeloma Leuk. 2015;15:314–22.

    Article  PubMed  Google Scholar 

  52. Dadu R, Hu MI, Cleeland CS, et al. The efficacy of the natural clay, Calcium Aluminosilicate Anti-Diarrheal (CASAD), in reducing medullary thyroid cancer-related diarrhea and its effects on quality of life: a pilot study. Thyroid 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica E. Zwiener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zwiener, J.E., Kwatampora, L.J., Busaidy, N.L. (2016). Emerging Therapies for Progressive Metastatic Medullary Thyroid Cancer. In: Wang, T., Evans, D. (eds) Medullary Thyroid Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-39412-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39412-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39410-7

  • Online ISBN: 978-3-319-39412-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics