Skip to main content

Positive Fluid Balance and Patients’ Outcomes

  • Chapter
  • First Online:
Perioperative Fluid Management
  • 1442 Accesses

Abstract

A large percentage of hospitalized patients are readmitted within 90 days of discharge with heart failure. Emerging observational data suggest that positive fluid balance that occurs during the hospitalization, particularly among patients at risk for fluid retention, is associated with poor outcomes. Consequently, careful and judicious attention to both fluid administration and to overall fluid balance during the hospital stay is important. To this end, understanding the physiology of the distribution of body fluid compartments, and that both the arterial and the venous aspects of the vascular space are independently important, is critical to patient care. In this chapter, we will review the clinical data outlining the potential risk of positive fluid balance and the physiological mechanisms that might influence the physician’s decision whether to administer intravenous fluid or diuretics. Ultimately, despite a large amount of data highlighting the potential risks of excess fluid during a hospital stay, well-designed trials that use diuretics to reestablish euvolemia upon discharge are needed to further guide management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jencks SF, Williams MV, Coleman EA. Rehospitalizations among patients in the medicare fee-for-service program. N Engl J Med. 2009;360(14):1418–28.

    Article  CAS  PubMed  Google Scholar 

  2. Lee J, de Louw E, Niemi M, Nelson R, Mark RG, Celi LA, et al. Association between fluid balance and survival in critically ill patients. J Intern Med. 2015;277(4):468–77.

    Article  CAS  PubMed  Google Scholar 

  3. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.

    Article  CAS  PubMed  Google Scholar 

  4. Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–65.

    Article  PubMed  Google Scholar 

  5. Sirvent JM, Ferri C, Baro A, Murcia C, Lorencio C. Fluid balance in sepsis and septic shock as a determining factor of mortality. Am J Emerg Med. 2015;33(2):186–9.

    Article  PubMed  Google Scholar 

  6. Acheampong A, Vincent JL. A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit Care. 2015;19:251.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Alsous F, Khamiees M, DeGirolamo A, Amoateng-Adjepong Y, Manthous CA. Negative fluid balance predicts survival in patients with septic shock: a retrospective pilot study. Chest. 2000;117(6):1749–54.

    Article  CAS  PubMed  Google Scholar 

  8. Martin GS, Moss M, Wheeler AP, Mealer M, Morris JA, Bernard GR. A randomized, controlled trial of furosemide with or without albumin in hypoproteinemic patients with acute lung injury. Crit Care Med. 2005;33(8):1681–7.

    Article  CAS  PubMed  Google Scholar 

  9. National Heart L, Blood Institute Acute Respiratory Distress Syndrome Clinical Trials N, Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, et al. Comparison of two fluid-management strategies in acute lung injury. The New England journal of medicine. 2006;354(24):2564–75.

    Google Scholar 

  10. de Almeida JP, Palomba H, Galas FR, Fukushima JT, Duarte FA, Nagaoka D, et al. Positive fluid balance is associated with reduced survival in critically ill patients with cancer. Acta Anaesthesiol Scand. 2012;56(6):712–7.

    Article  PubMed  Google Scholar 

  11. Flori HR, Church G, Liu KD, Gildengorin G, Matthay MA. Positive fluid balance is associated with higher mortality and prolonged mechanical ventilation in pediatric patients with acute lung injury. Crit Care Res Pract. 2011;2011:854142.

    PubMed  PubMed Central  Google Scholar 

  12. McArdle GT, Price G, Lewis A, Hood JM, McKinley A, Blair PH, et al. Positive fluid balance is associated with complications after elective open infrarenal abdominal aortic aneurysm repair. Eur J Vasc Endovasc Surg. 2007;34(5):522–7.

    Article  CAS  PubMed  Google Scholar 

  13. Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL, et al. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care. 2008;12(3):R74.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pipanmekaporn T, Punjasawadwong Y, Charuluxananan S, Lapisatepun W, Bunburaphong P, Saeteng S. Association of positive fluid balance and cardiovascular complications after thoracotomy for noncancer lesions. Risk Manage Healthc Policy. 2014;7:121–9.

    Google Scholar 

  15. Bouchard J, Soroko SB, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP, et al. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009;76(4):422–7.

    Article  PubMed  Google Scholar 

  16. Barmparas G, Liou D, Lee D, Fierro N, Bloom M, Ley E, et al. Impact of positive fluid balance on critically ill surgical patients: a prospective observational study. J Crit Care. 2014;29(6):936–41.

    Article  PubMed  Google Scholar 

  17. Toraman F, Evrenkaya S, Yuce M, Turek O, Aksoy N, Karabulut H, et al. Highly positive intraoperative fluid balance during cardiac surgery is associated with adverse outcome. Perfusion. 2004;19(2):85–91.

    Article  PubMed  Google Scholar 

  18. Shim HJ, Jang JY, Lee SH, Lee JG. The effect of positive balance on the outcomes of critically ill noncardiac postsurgical patients: a retrospective cohort study. J Crit Care. 2014;29(1):43–8.

    Article  PubMed  Google Scholar 

  19. Schroeder VA, DiSessa TG, Douglas WI. Postoperative fluid balance influences the need for antihypertensive therapy following coarctation repair. Pediatr Crit Care Med. 2004;5(6):539–41.

    Article  PubMed  Google Scholar 

  20. Drazner MH, Rame JE, Stevenson LW, Dries DL. Prognostic importance of elevated jugular venous pressure and a third heart sound in patients with heart failure. N Engl J Med. 2001;345(8):574–81.

    Article  CAS  PubMed  Google Scholar 

  21. Androne AS, Hryniewicz K, Hudaihed A, Mancini D, Lamanca J, Katz SD. Relation of unrecognized hypervolemia in chronic heart failure to clinical status, hemodynamics, and patient outcomes. Am J Cardiol. 2004;93(10):1254–9.

    Article  PubMed  Google Scholar 

  22. Kalantar-Zadeh K, Regidor DL, Kovesdy CP, Van Wyck D, Bunnapradist S, Horwich TB, et al. Fluid retention is associated with cardiovascular mortality in patients undergoing long-term hemodialysis. Circulation. 2009;119(5):671–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Agarwal R. Hypervolemia is associated with increased mortality among hemodialysis patients. Hypertension. 2010;56(3):512–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hung SC, Kuo KL, Peng CH, Wu CH, Wang YC, Tarng DC. Association of fluid retention with anemia and clinical outcomes among patients with chronic kidney disease. J Am Heart Assoc. 2015;4(1), e001480.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Danziger J, Zeidel ML. Osmotic homeostasis. Clin J Am Soc Nephrol. 2015;10(5):852–62.

    Article  CAS  PubMed  Google Scholar 

  26. Starling EH. On the absorption of fluids from the connective tissue spaces. J Physiol. 1896;19(4):312–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Krogh A, Landis EM, Turner AH. The movement of fluid through the human capillary wall in relation to venous pressure and to the colloid osmotic pressure of the blood. J Clin Invest. 1932;11(1):63–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Adamson RH, Lenz JF, Zhang X, Adamson GN, Weinbaum S, Curry FE. Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J Physiol. 2004;557(Pt 3):889–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vink H, Duling BR. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res. 1996;79(3):581–9.

    Article  CAS  PubMed  Google Scholar 

  30. Levick JR, Michel CC. Microvascular fluid exchange and the revised starling principle. Cardiovasc Res. 2010;87(2):198–210.

    Article  CAS  PubMed  Google Scholar 

  31. Levick JR. Revision of the starling principle: new views of tissue fluid balance. J Physiol. 2004;557(Pt 3):704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang L, Jiang S, Zhang M, Zheng Z, Ma Y. Albumin versus other fluids for fluid resuscitation in patients with sepsis: a meta-analysis. PLoS One. 2014;9(12), e114666.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–56.

    Article  CAS  PubMed  Google Scholar 

  34. Woodcock TM, Woodcock TE. Revised starling equation predicts pulmonary edema formation during fluid loading in the critically ill with presumed hypovolemia. Crit Care Med. 2012;40(9):2741–2; author reply 2742.

    Article  PubMed  Google Scholar 

  35. Woodcock TE, Woodcock TM. Revised starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108(3):384–94.

    Article  CAS  PubMed  Google Scholar 

  36. Hahn RG. Volume kinetics for infusion fluids. Anesthesiology. 2010;113(2):470–81.

    Article  PubMed  Google Scholar 

  37. Verheij J, van Lingen A, Raijmakers PG, Rijnsburger ER, Veerman DP, Wisselink W, et al. Effect of fluid loading with saline or colloids on pulmonary permeability, oedema and lung injury score after cardiac and major vascular surgery. Br J Anaesth. 2006;96(1):21–30.

    Article  CAS  PubMed  Google Scholar 

  38. Ng CS, Wan S, Yim AP, Arifi AA. Pulmonary dysfunction after cardiac surgery. Chest. 2002;121(4):1269–77.

    Article  PubMed  Google Scholar 

  39. Sarnoff SJ, Berglund E. Ventricular function. I. Starling’s law of the heart studied by means of simultaneous right and left ventricular function curves in the dog. Circulation. 1954;9(5):706–18.

    Article  CAS  PubMed  Google Scholar 

  40. Wang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Omland T, et al. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N Engl J Med. 2004;350(7):655–63.

    Article  CAS  PubMed  Google Scholar 

  41. Steimle AE, Stevenson LW, Chelimsky-Fallick C, Fonarow GC, Hamilton MA, Moriguchi JD, et al. Sustained hemodynamic efficacy of therapy tailored to reduce filling pressures in survivors with advanced heart failure. Circulation. 1997;96(4):1165–72.

    Article  CAS  PubMed  Google Scholar 

  42. Zoccali C, Torino C, Tripepi R, Tripepi G, D’Arrigo G, Postorino M, et al. Pulmonary congestion predicts cardiac events and mortality in ESRD. J Am Soc Nephrol. 2013;24(4):639–46.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hatt SR, Gnanaraj L. Interventions for intermittent exotropia. Cochrane Database Syst Rev. 2013;5, CD003737.

    PubMed Central  Google Scholar 

  44. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436–48 [Review].

    Article  PubMed  Google Scholar 

  45. Belenkie I, Dani R, Smith ER, Tyberg JV. Effects of volume loading during experimental acute pulmonary embolism. Circulation. 1989;80(1):178–88.

    Article  CAS  PubMed  Google Scholar 

  46. Ternacle J, Gallet R, Mekontso-Dessap A, Meyer G, Maitre B, Bensaid A, et al. Diuretics in normotensive patients with acute pulmonary embolism and right ventricular dilatation. Circ J. 2013;77(10):2612–8.

    Article  PubMed  Google Scholar 

  47. Gallet R, Meyer G, Ternacle J, Biendel C, Brunet A, Meneveau N, et al. Diuretic versus placebo in normotensive acute pulmonary embolism with right ventricular enlargement and injury: a double-blind randomised placebo controlled study. Protocol of the diper study. BMJ Open. 2015;5(5):e007466.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gnanara JF, von Haehling S, Anker SD, Raj DS, Radhakrishnan J. The relevance of congestion in the cardio-renal syndrome. Kidney Int. 2013;83(3):384–91.

    Article  Google Scholar 

  49. Winton FR. The influence of increase of ureter pressure on the isolated mammalian kidney. J Physiol. 1931;71(4):381–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Winton FR. The influence of venous pressure on the isolated mammalian kidney. J Physiol. 1931;72(1):49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Blake WD, Wegria R, et al. Effect of increased renal venous pressure on renal function. Am J Physiol. 1949;157(1):1–13.

    CAS  PubMed  Google Scholar 

  52. Bradley SE, Bradley GP. The effect of increased intra-abdominal pressure on renal function in man. J Clin Invest. 1947;26(5):1010–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dalfino L, Tullo L, Donadio I, Malcangi V, Brienza N. Intra-abdominal hypertension and acute renal failure in critically ill patients. Intensive Care Med. 2008;34(4):707–13.

    Article  PubMed  Google Scholar 

  54. Priebe HJ, Heimann JC, Hedley-Whyte J. Effects of renal and hepatic venous congestion on renal function in the presence of low and normal cardiac output in dogs. Circ Res. 1980;47(6):883–90.

    Article  CAS  PubMed  Google Scholar 

  55. Aronson D, Abassi Z, Allon E, Burger AJ. Fluid loss, venous congestion, and worsening renal function in acute decompensated heart failure. Eur J Heart Fail. 2013;15(6):637–43.

    Article  CAS  PubMed  Google Scholar 

  56. Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53(7):589–96.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wattad M, Darawsha W, Solomonica A, Hijazi M, Kaplan M, Makhoul BF, et al. Interaction between worsening renal function and persistent congestion in acute decompensated heart failure. Am J Cardiol. 2015;115(7):932–7.

    Article  PubMed  Google Scholar 

  58. Sinkeler SJ, Damman K, van Veldhuisen DJ, Hillege H, Navis G. A re-appraisal of volume status and renal function impairment in chronic heart failure: combined effects of pre-renal failure and venous congestion on renal function. Heart Fail Rev. 2012;17(2):263–70.

    Article  PubMed  Google Scholar 

  59. Doty JM, Saggi BH, Sugerman HJ, Blocher CR, Pin R, Fakhry I, et al. Effect of increased renal venous pressure on renal function. J Trauma. 1999;47(6):1000–3.

    Article  CAS  PubMed  Google Scholar 

  60. Mullens W, Abrahams Z, Skouri HN, Francis GS, Taylor DO, Starling RC, et al. Elevated intra-abdominal pressure in acute decompensated heart failure: a potential contributor to worsening renal function? J Am Coll Cardiol. 2008;51(3):300–6.

    Article  PubMed  Google Scholar 

  61. De Waele JJ, Hoste EA, Malbrain ML. Decompressive laparotomy for abdominal compartment syndrome––a critical analysis. Crit Care. 2006;10(2):R51.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Malbrain ML, Cheatham ML, Kirkpatrick A, Sugrue M, Parr M, De Waele J, et al. Results from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome. I. Definitions. Intensive Care Med. 2006;32(11):1722–32.

    Article  PubMed  Google Scholar 

  63. Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009;53(7):582–8.

    Article  PubMed  Google Scholar 

  64. Legrand M, Dupuis C, Simon C, Gayat E, Mateo J, Lukaszewicz AC, et al. Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit Care. 2013;17(6):R278.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Binanay C, Califf RM, Hasselblad V, O’Connor CM, Shah MR, Sopko G, et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the escape trial. JAMA. 2005;294(13):1625–33 [Clinical Trial Multicenter Study Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  Google Scholar 

  66. Cho S, Atwood JE. Peripheral edema. Am J Med. 2002;113(7):580–6.

    Article  PubMed  Google Scholar 

  67. Mollaret P, Bastin R, Goulon M, Pocidalo JJ, Rapin M, Cathala F. Recovery from severe uterine tetanus after treatment with continued maximal curarization tracheostomy, pulmonary ventilation with controlled positive and negative pressure and maintenance of nutritional and fluid balance, but without anesthesia. Mem Acad Chir. 1955;81(20–21):600–6.

    CAS  PubMed  Google Scholar 

  68. Chen KP, Cavender S, Lee J, Feng M, Mark RG, Celi LA, et al. Peripheral edema, central venous pressure, and risk of AKI in critical illness. Clin J Am Soc Nephrol. 2016;11(4):602–8.

    Article  PubMed  Google Scholar 

  69. Srinivasa S, Tan ST. Postoperative fluid management in major elective plastic surgery. J Plast Reconstr Aesthet Surg. 2010;63(6):992–5.

    Article  PubMed  Google Scholar 

  70. Rydstedt LL, Williams GH, Hollenberg NK. Renal and endocrine response to saline infusion in essential hypertension. Hypertension. 1986;8(3):217–22.

    Article  CAS  PubMed  Google Scholar 

  71. Rocchini AP, Key J, Bondie D, Chico R, Moorehead C, Katch V, et al. The effect of weight loss on the sensitivity of blood pressure to sodium in obese adolescents. N Engl J Med. 1989;321(9):580–5.

    Article  CAS  PubMed  Google Scholar 

  72. Arora P, Reingold J, Baggish A, Guanaga DP, Wu C, Ghorbani A, et al. Weight loss, saline loading, and the natriuretic peptide system. J Am Heart Assoc. 2015;4(1), e001265.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Fishman AP, Maxwell MH, Crowder CH, Morales P. Kidney function in cor pulmonale; particular consideration of changes in renal hemodynamics and sodium excretion during variation in level of oxygenation. Circulation. 1951;3(5):703–21.

    Article  CAS  PubMed  Google Scholar 

  74. de Louw EJ, Sun PO, Lee J, Feng M, Mark RG, Celi LA, et al. Increased incidence of diuretic use in critically ill obese patients. J Crit Care. 2015;30(3):619–23.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lopot F, Kotyk P. Computational analysis of blood volume dynamics during hemodialysis. Int J Artif Organs. 1997;20(2):91–5.

    CAS  PubMed  Google Scholar 

  76. Marenzi G, Lauri G, Grazi M, Assanelli E, Campodonico J, Agostoni P. Circulatory response to fluid overload removal by extracorporeal ultrafiltration in refractory congestive heart failure. J Am Coll Cardiol. 2001;38(4):963–8.

    Article  CAS  PubMed  Google Scholar 

  77. Barsuk JH, Gordon RA, Cohen ER, Cotts WG, Malkenson D, Yancy CW, et al. A diuretic protocol increases volume removal and reduces readmissions among hospitalized patients with acute decompensated heart failure. Congest Heart Fail. 2013;19(2):53–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Danziger MD, MPhil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Danziger, J. (2016). Positive Fluid Balance and Patients’ Outcomes. In: Farag, E., Kurz, A. (eds) Perioperative Fluid Management. Springer, Cham. https://doi.org/10.1007/978-3-319-39141-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39141-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39139-7

  • Online ISBN: 978-3-319-39141-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics