Skip to main content

Meshfree Methods Applied to Consolidation Problems in Saturated Soils

  • Chapter
  • First Online:
Innovative Numerical Approaches for Multi-Field and Multi-Scale Problems

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 81))

Abstract

A meshfree numerical model, based on the principle of Local Maximum Entropy, with a B-Bar based algorithm to avoid instabilities, is applied to solve consolidation problems in saturated soils. This numerical scheme has been previously validated for purely elasticity problems without water (mono phase), as well as for steady seepage in elastic porous media. Hereinafter, the model is validated for well known consolidation theoretical problems, both static and dynamic, with known analytical solutions. For several examples, the solutions obtained with the new code are compared to PLAXIS (commercial software). Finally, after validated, solutions for dynamic radial consolidation and sinks, which have not been found in the literature, are presented as a novelty. This new numerical approach is demonstrated to be feasible for this kind of problems in porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), 155–164.

    Google Scholar 

  2. Biot, M. A. (1956). General solutions of the equations of elasticity and consolidation for a porous material. Journal of Applied Mechanics, 91–96.

    Google Scholar 

  3. Zienkiewicz, O. C., Chang, C. T., & Bettes, P. (1980). Drained, undrained, consolidating and dynamic behaviour assumptions in soils. Géotechnique, 30(4), 385–395.

    Article  Google Scholar 

  4. López-Querol, S., & Blazquez, R. (2006). Liquefaction and cyclic mobility model in saturated granular media. International Journal for Numerical and Analytical Methods in Geomechanics, 30, 413–439.

    Article  MATH  Google Scholar 

  5. Cividini, A., & Gioda, G. (2013). On the dynamic analysis of two-phase soils. In S. Pietruszczak & G. N. Pande (Eds.), Proceedings of the third international symposium on computational geomechanics (ComGeo III) (pp. 452–461).

    Google Scholar 

  6. Ortiz, A., Puso, M. A., & Sukumar, N. (2004). Construction of polygonal interpolants: A maximum entropy approach. International Journal for Numerical Methods in Engineering, 61(12), 2159–2181.

    Article  MathSciNet  MATH  Google Scholar 

  7. Arroyo, M., & Ortiz, M. (2006). Local maximum-entropy approximation schemes: A seamless bridge between finite elements and meshfree methods. International Journal for Numerical Methods in Engineering, 65(13), 2167–2202.

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, B., Habbal, F., & Ortiz, M. (2010). Optimal transportation meshfree approximation schemes for fluid and plastic flows. International Journal for Numerical Methods in Engineering, 83, 1541–1579.

    Article  MathSciNet  MATH  Google Scholar 

  9. Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. Computer Journal, 7, 308–313.

    Article  MATH  Google Scholar 

  10. Hughes, T. J. R. (1980). Generalization of selective integration procedures to anisotropic and nonlinear media. International Journal for Numerical Methods in Engineering, 15, 1413–1418.

    Article  MathSciNet  MATH  Google Scholar 

  11. Simo, J. C., & Rifai, M. S. (1990). A class of mixed assumed strain methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, 29, 1595–1638.

    Article  MathSciNet  MATH  Google Scholar 

  12. Kasper, E. P., & Taylor, R. L. (2000). A mixed-enhanced strain method: Part I: Geometrically linear problems. Computers and Structures, 75(3), 237–250.

    Article  Google Scholar 

  13. De Souza Neto, E. A., Pires, F. M., & Owen, D. R. J. (1980). F-bar-based linear triangles and tetrahedra for finte strain analysis of nearly incompressible solids. Part I: Formulation and benchmarking. International Journal for Numerical Methods in Engineering, 62, 353–383.

    Google Scholar 

  14. Bonet, J., & Burton, A. J. (1998). A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic Explicit applications. Communications in Numerical Methods in Engineering, 14(5), 437–449.

    Google Scholar 

  15. Hauret, P., Kuhl, E., & Ortiz, M. (2007). Diamond elements: A finite element/discrete-mechanics approximation scheme with guaranteed optimal convergene in incompressible elasticity. International Journal for Numerical Methods in Engineering, 73, 253–294.

    Article  MathSciNet  MATH  Google Scholar 

  16. Elguedj, T., Bazilevs, Y., Calo, V. M., & Hughes, T. J. R. (2008). \(\overline{B}\) and \(\overline{F}\) projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements. Computer Methods in Applied Mechanics and Engineering, 197(33–40), 2732–2762.

    Article  MATH  Google Scholar 

  17. Artioli, E., Castellazzi, G., & Krysl, P. (2014). Assumed strain nodally integrated hexahedral finite element formulations for elastoplastic applications. International Journal for Numerical Methods in Engineering, 99(11), 844–866.

    Article  MathSciNet  Google Scholar 

  18. Ortiz, A., Puso, M. A., & Sukumar, N. (2010). Maximum-entropy meshfree method for compressible and near-incompressible elasticity. Computer Methods in Applied Mechanics and Engineering, 199, 1859–1871.

    Article  MathSciNet  MATH  Google Scholar 

  19. Navas, P., López-Querol, S., Yu, R. C., & Li, B. (2016). B-bar based algorithm applied to meshfree numerical schemes to solve unconfined seepage problems through porous media. International Journal for Numerical and Analytical Methods in Geomechanics, 40, 962–984.

    Google Scholar 

  20. López-Querol, S., Navas, P., Peco, J., & Arias-Trujillo, J. (2011). Changing impermeability boundary conditions to obtain free surfaces in unconfined seepage problems. Canadian Geotechnical Journal, 48, 841–845.

    Article  Google Scholar 

  21. Navas, P., & López-Querol, S. (2013). Generalized unconfined seepage flow model using displacement based formulation. Engineering Geology, 166, 140–141.

    Article  Google Scholar 

  22. Biot, M. A. (1956). Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-Frequency range. Journal of the Acoustical Society of America, 28(2), 168–178.

    Article  MathSciNet  Google Scholar 

  23. Terzaghi, K. V. (1925). Principles of Soil Mechanics. Engineering News-Record, 95, 19–27.

    Google Scholar 

  24. Zienkiewicz, O. C., & Taylor, R. L. (1994). El método de los elementos finitos. Vol 1: Formulación básica y problemas lineales. Barcelona: CIMNE.

    Google Scholar 

  25. Fernández Merodo, J. A., Mira, P., Pastor, M., & Li, T. (1999). GeHoMadrid User Manual. Madrid: CEDEX. Technical Report.

    Google Scholar 

  26. López-Querol, S. (2006). Modelización geomecánica de los procesos de densificación, licuefacción y movilidad cíclica de suelos granulares sometidos a solicitaciones dinámicas. PhD thesis, University of Castilla-La Mancha, Ciudad Real, Spain.

    Google Scholar 

  27. Barron, R. A. (1948). Consolidation of fine-grained soils by drain wells. Transationc ASCE, 113, 718–754.

    Google Scholar 

Download references

Acknowledgments

This research has been partially funded by the Spanish Ministry of Economy and Competitiveness through the projects BIA2012–31678 and MAT2012–35416. The first author also acknowledges the financial support via the fellowship No. BES2013–063924.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rena C. Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Navas, P., López-Querol, S., Yu, R.C., Li, B. (2016). Meshfree Methods Applied to Consolidation Problems in Saturated Soils. In: Weinberg, K., Pandolfi, A. (eds) Innovative Numerical Approaches for Multi-Field and Multi-Scale Problems. Lecture Notes in Applied and Computational Mechanics, vol 81. Springer, Cham. https://doi.org/10.1007/978-3-319-39022-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39022-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39021-5

  • Online ISBN: 978-3-319-39022-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics