Skip to main content

Acute Promyelocytic Leukaemia: Epigenetic Function of the PML-RARα Oncogene

  • Chapter
  • First Online:
The Functional Nucleus

Abstract

Acute promyelocytic leukaemia is a myeloid neoplasm characterized by expansion of promyelocytic progenitors. Its main driver is the oncogenic fusion protein generated by the (t15;17) chromosomal translocation between the promyelocytic leukaemia (PML) and retinoic acid receptor α (RARα) genes. Being PML-RARα the primary trigger of APL, it represents an excellent model to study neoplastic transformation in the haematopoietic system. Importantly, epigenetic changes imposed by and/or associated with PML-RARα have been implicated not only in promoting/sustaining the tumour phenotype, but also in influencing therapy response. In this chapter we will discuss the existing literature on chromatin remodelling driven by PML-RARα and its impact on APL pathogenesis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ablain J, Rice K, Soilihi H, de Reynies A, Minucci S, de The H (2014) Activation of a promyelocytic leukemia-tumor protein 53 axis underlies acute promyelocytic leukemia cure. Nat Med 20(2):167–174. doi:10.1038/nm.3441

    Article  CAS  PubMed  Google Scholar 

  • Adam S, Polo SE, Almouzni G (2013) Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIRA. Cell 155(1):94–106. doi:10.1016/j.cell.2013.08.029

    Article  CAS  PubMed  Google Scholar 

  • Arnould C, Philippe C, Bourdon V, Gr goire MJ, Berger R, Jonveaux P (1999) The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor alpha in acute promyelocytic-like leukaemia. Hum Mol Genet 8(9):1741–1749

    Article  CAS  PubMed  Google Scholar 

  • Arteaga MF, Mikesch JH, Qiu J, Christensen J, Helin K, Kogan SC, Dong S, So CW (2013) The histone demethylase PHF8 governs retinoic acid response in acute promyelocytic leukemia. Cancer Cell 23(3):376–389. doi:10.1016/j.ccr.2013.02.014, S1535-6108(13)00070-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Banaszynski LA, Wen D, Dewell S, Whitcomb SJ, Lin M, Diaz N, Elsasser SJ, Chapgier A, Goldberg AD, Canaani E, Rafii S, Zheng D, Allis CD (2013) Hira-dependent histone H3.3 deposition facilitates PRC2 recruitment at developmental loci in ES cells. Cell 155(1):107–120. doi:10.1016/j.cell.2013.08.061

    Article  CAS  PubMed  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837. doi:10.1016/j.cell.2007.05.009

    Article  CAS  PubMed  Google Scholar 

  • Bartke T, Vermeulen M, Xhemalce B, Robson SC, Mann M, Kouzarides T (2010) Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143(3):470–484. doi:10.1016/j.cell.2010.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N, Van Loo P, Wedge DC, Cooke SL, Gundem G, Davies H, Nik-Zainal S, Martin S, McLaren S, Goodie V, Robinson B, Butler A, Teague JW, Halai D, Khatri B, Myklebost O, Baumhoer D, Jundt G, Hamoudi R, Tirabosco R, Amary MF, Futreal PA, Stratton MR, Campbell PJ, Flanagan AM (2013) Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat Genet 45(12):1479–1482. doi:10.1038/ng.2814, ng.2814 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Bernardi R, Pandolfi PP (2007) Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 8(12):1006–1016. doi:10.1038/nrm2277

    Article  CAS  PubMed  Google Scholar 

  • Bernardi R, Scaglioni PP, Bergmann S, Horn HF, Vousden KH, Pandolfi PP (2004) PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol 6(7):665–672. doi:10.1038/ncb1147

    Article  CAS  PubMed  Google Scholar 

  • Borden KL, Boddy MN, Lally J, O’Reilly NJ, Martin S, Howe K, Solomon E, Freemont PS (1995) The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J 14(7):1532–1541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boukarabila H, Saurin AJ, Batsche E, Mossadegh N, van Lohuizen M, Otte AP, Pradel J, Muchardt C, Sieweke M, Duprez E (2009) The PRC1 Polycomb group complex interacts with PLZF/RARA to mediate leukemic transformation. Genes Dev 23(10):1195–1206. doi:10.1101/gad.512009, 23/10/1195 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkhard P, Stetefeld J, Strelkov SV (2001) Coiled coils: a highly versatile protein folding motif. Trends Cell Biol 11(2):82–88, S0962-8924(00)01898-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Carbone R, Botrugno OA, Ronzoni S, Insinga A, Di Croce L, Pelicci PG, Minucci S (2006) Recruitment of the histone methyltransferase SUV39H1 and its role in the oncogenic properties of the leukemia-associated PML-retinoic acid receptor fusion protein. Mol Cell Biol 26(4):1288–1296. doi:10.1128/MCB.26.4.1288-1296.2006, 26/4/1288 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carracedo A, Weiss D, Leliaert AK, Bhasin M, de Boer VC, Laurent G, Adams AC, Sundvall M, Song SJ, Ito K, Finley LS, Egia A, Libermann T, Gerhart-Hines Z, Puigserver P, Haigis MC, Maratos-Flier E, Richardson AL, Schafer ZT, Pandolfi PP (2012) A metabolic prosurvival role for PML in breast cancer. J Clin Invest 122(9):3088–3100. doi:10.1172/jci62129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castaigne S, Chomienne C, Daniel MT, Ballerini P, Berger R, Fenaux P, Degos L (1990) All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results. Blood 76(9):1704–1709

    CAS  PubMed  Google Scholar 

  • Catalano A, Dawson MA, Somana K, Opat S, Schwarer A, Campbell LJ, Iland H (2007) The PRKAR1A gene is fused to RARA in a new variant acute promyelocytic leukemia. Blood 110(12):4073–4076. doi:10.1182/blood-2007-06-095554

    Article  CAS  PubMed  Google Scholar 

  • Cavalli G, Misteli T (2013) Functional implications of genome topology. Nat Struct Mol Biol 20(3):290–299. doi:10.1038/nsmb.2474

    Article  CAS  PubMed  Google Scholar 

  • Chan IT, Kutok JL, Williams IR, Cohen S, Moore S, Shigematsu H, Ley TJ, Akashi K, Le Beau MM, Gilliland DG (2006) Oncogenic K-ras cooperates with PML-RAR alpha to induce an acute promyelocytic leukemia-like disease. Blood 108(5):1708–1715. doi:10.1182/blood-2006-04-015040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Brand NJ, Chen A, Chen SJ, Tong JH, Wang ZY, Waxman S, Zelent A (1993) Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO j 12(3):1161–1167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X, Han ZG, Ni JH, Shi GY, Jia PM, Liu MM, He KL, Niu C, Ma J, Zhang P, Zhang TD, Paul P, Naoe T, Kitamura K, Miller W, Waxman S, Wang ZY, de The H, Chen SJ, Chen Z (1997) Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood 89(9):3345–3353

    CAS  PubMed  Google Scholar 

  • Chen P, Zhao J, Wang Y, Wang M, Long H, Liang D, Huang L, Wen Z, Li W, Li X, Feng H, Zhao H, Zhu P, Li M, Wang QF, Li G (2013) H3.3 actively marks enhancers and primes gene transcription via opening higher-ordered chromatin. Genes Dev 27(19):2109–2124. doi:10.1101/gad.222174.113, gad.222174.113 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clouaire T, Stancheva I (2008) Methyl-CpG binding proteins: specialized transcriptional repressors or structural components of chromatin? Cell Mol Life Sci 65(10):1509–1522. doi:10.1007/s00018-008-7324-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Condemine W, Takahashi Y, Zhu J, Puvion-Dutilleul F, Guegan S, Janin A, de The H (2006) Characterization of endogenous human promyelocytic leukemia isoforms. Cancer Res 66(12):6192–6198. doi:10.1158/0008-5472, CAN-05-3792. 66/12/6192 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Cui K, Zang C, Roh TY, Schones DE, Childs RW, Peng W, Zhao K (2009) Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4(1):80–93. doi:10.1016/j.stem.2008.11.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel MT, Koken M, Romagne O, Barbey S, Bazarbachi A, Stadler M, Guillemin MC, Degos L, Chomienne C, de The H (1993) PML protein expression in hematopoietic and acute promyelocytic leukemia cells. Blood 82(6):1858–1867

    CAS  PubMed  Google Scholar 

  • Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27. doi:10.1016/j.cell.2012.06.013, S0092-8674(12)00762-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  • de The H, Chen Z (2010) Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat Rev Cancer 10(11):775–783. doi:10.1038/nrc2943, nrc2943 [pii]

    Article  PubMed  CAS  Google Scholar 

  • de The H, Chomienne C, Lanotte M, Degos L, Dejean A (1990a) The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 347(6293):558–561. doi:10.1038/347558a0

    Article  PubMed  Google Scholar 

  • de The H, Vivanco-Ruiz MM, Tiollais P, Stunnenberg H, Dejean A (1990b) Identification of a retinoic acid responsive element in the retinoic acid receptor beta gene. Nature 343(6254):177–180. doi:10.1038/343177a0

    Article  PubMed  Google Scholar 

  • de The H, Le Bras M, Lallemand-Breitenbach V (2012) The cell biology of disease: acute promyelocytic leukemia, arsenic, and PML bodies. J Cell Biol 198(1):11–21. doi:10.1083/jcb.201112044, jcb.201112044 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delbarre E, Ivanauskiene K, Kuntziger T, Collas P (2013) DAXX-dependent supply of soluble (H3.3-H4) dimers to PML bodies pending deposition into chromatin. Genome Res 23(3):440–451. doi:10.1101/gr.142703.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dellaire G, Bazett-Jones DP (2004) PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. Bioessays 26(9):963–977. doi:10.1002/bies.20089

    Article  CAS  PubMed  Google Scholar 

  • Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M, Fuks F, Lo Coco F, Kouzarides T, Nervi C, Minucci S, Pelicci PG (2002) Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295(5557):1079–1082. doi:10.1126/science.1065173, 295/5557/1079 [pii]

    Article  PubMed  Google Scholar 

  • Di Croce L, Buschbeck M, Gutierrez A, Joval I, Morey L, Villa R, Minucci S (2004) Altered epigenetic signals in human disease. Cancer Biol Ther 3(9):831–837, 1103 [pii]

    Article  PubMed  Google Scholar 

  • Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, Ritchey JK, Young MA, Lamprecht T, McLellan MD, McMichael JF, Wallis JW, Lu C, Shen D, Harris CC, Dooling DJ, Fulton RS, Fulton LL, Chen K, Schmidt H, Kalicki-Veizer J, Magrini VJ, Cook L, McGrath SD, Vickery TL, Wendl MC, Heath S, Watson MA, Link DC, Tomasson MH, Shannon WD, Payton JE, Kulkarni S, Westervelt P, Walter MJ, Graubert TA, Mardis ER, Wilson RK, DiPersio JF (2012) Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481(7382):506–510. doi:10.1038/nature10738, nature10738 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drane P, Ouararhni K, Depaux A, Shuaib M, Hamiche A (2010) The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 24(12):1253–1265. doi:10.1101/gad.566910, gad.566910 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du C, Redner RL, Cooke MP, Lavau C (1999) Overexpression of wild-type retinoic acid receptor alpha (RARalpha) recapitulates retinoic acid-sensitive transformation of primary myeloid progenitors by acute promyelocytic leukemia RARalpha-fusion genes. Blood 94(2):793–802

    CAS  PubMed  Google Scholar 

  • Estey E, Garcia-Manero G, Ferrajoli A, Faderl S, Verstovsek S, Jones D, Kantarjian H (2006) Use of all-trans retinoic acid plus arsenic trioxide as an alternative to chemotherapy in untreated acute promyelocytic leukemia. Blood 107(9):3469–3473. doi:10.1182/blood-2005-10-4006, 2005-10-4006 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Fazi F, Travaglini L, Carotti D, Palitti F, Diverio D, Alcalay M, McNamara S, Miller WH Jr, Lo Coco F, Pelicci PG, Nervi C (2005) Retinoic acid targets DNA-methyltransferases and histone deacetylases during APL blast differentiation in vitro and in vivo. Oncogene 24(11):1820–1830. doi:10.1038/sj.onc.1208286, 1208286 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ, Schifano E, Booth J, van Putten W, Skrabanek L, Campagne F, Mazumdar M, Greally JM, Valk PJ, Lowenberg B, Delwel R, Melnick A (2010) DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 17(1):13–27. doi:10.1016/j.ccr.2009.11.020, S1535-6108(09)00420-6 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu C, Ahmed K, Ding H, Ding X, Lan J, Yang Z, Miao Y, Zhu Y, Shi Y, Zhu J, Huang H, Yao X (2005) Stabilization of PML nuclear localization by conjugation and oligomerization of SUMO-3. Oncogene 24(35):5401–5413. doi:10.1038/sj.onc.1208714, 1208714 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ, Stadler S, Dewell S, Law M, Guo X, Li X, Wen D, Chapgier A, DeKelver RC, Miller JC, Lee YL, Boydston EA, Holmes MC, Gregory PD, Greally JM, Rafii S, Yang C, Scambler PJ, Garrick D, Gibbons RJ, Higgs DR, Cristea IM, Urnov FD, Zheng D, Allis CD (2010) Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140(5):678–691. doi:10.1016/j.cell.2010.01.003, S0092-8674(10)00004-8 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthardt M, Ferrara FF, Zamir I, Seiser C, Lazar MA, Minucci S, Pelicci PG (1998) Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 391(6669):815–818. doi:10.1038/35901

    Article  CAS  PubMed  Google Scholar 

  • Guibal FC, Alberich-Jorda M, Hirai H, Ebralidze A, Levantini E, Di Ruscio A, Zhang P, Santana-Lemos BA, Neuberg D, Wagers AJ, Rego EM, Tenen DG (2009) Identification of a myeloid committed progenitor as the cancer-initiating cell in acute promyelocytic leukemia. Blood 114(27):5415–5425. doi:10.1182/blood-2008-10-182071, blood-2008-10-182071 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He LZ, Guidez F, Tribioli C, Peruzzi D, Ruthardt M, Zelent A, Pandolfi PP (1998) Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nat Genet 18(2):126–135. doi:10.1038/ng0298-126

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S (2008) Nucleosome destabilization in the epigenetic regulation of gene expression. Nat Rev Genet 9(1):15–26. doi:10.1038/nrg2206, nrg2206 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Hoemme C, Peerzada A, Behre G, Wang Y, McClelland M, Nieselt K, Zschunke M, Disselhoff C, Agrawal S, Isken F, Tidow N, Berdel WE, Serve H, Muller-Tidow C (2008) Chromatin modifications induced by PML-RARalpha repress critical targets in leukemogenesis as analyzed by ChIP-Chip. Blood 111(5):2887–2895. doi:10.1182/blood-2007-03-079921, blood-2007-03-079921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollenbach AD, McPherson CJ, Mientjes EJ, Iyengar R, Grosveld G (2002) Daxx and histone deacetylase II associate with chromatin through an interaction with core histones and the chromatin-associated protein Dek. J Cell Sci 115(Pt 16):3319–3330

    CAS  PubMed  Google Scholar 

  • Ishov AM, Sotnikov AG, Negorev D, Vladimirova OV, Neff N, Kamitani T, Yeh ET, Strauss JF III, Maul GG (1999) PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol 147(2):221–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y, Rosenblatt J, Avigan DE, Teruya-Feldstein J, Pandolfi PP (2008) PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453(7198):1072–1078. doi:10.1038/nature07016, nature07016 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito K, Carracedo A, Weiss D, Arai F, Ala U, Avigan DE, Schafer ZT, Evans RM, Suda T, Lee CH, Pandolfi PP (2012) A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med 18(9):1350–1358. doi:10.1038/nm.2882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeanne M, Lallemand-Breitenbach V, Ferhi O, Koken M, Le Bras M, Duffort S, Peres L, Berthier C, Soilihi H, Raught B, de The H (2010) PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3. Cancer Cell 18(1):88–98. doi:10.1016/j.ccr.2010.06.003

    Article  CAS  PubMed  Google Scholar 

  • Jensen K, Shiels C, Freemont PS (2001) PML protein isoforms and the RBCC/TRIM motif. Oncogene 20(49):7223–7233. doi:10.1038/sj.onc.1204765

    Article  CAS  PubMed  Google Scholar 

  • Jin C, Zang C, Wei G, Cui K, Peng W, Zhao K, Felsenfeld G (2009) H3.3/H2A.Z double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions. Nat Genet 41(8):941–945. doi:10.1038/ng.409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joazeiro CA, Weissman AM (2000) RING finger proteins: mediators of ubiquitin ligase activity. Cell 102(5):549–552, S0092-8674(00)00077-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Kamashev D, Vitoux D, De The H (2004) PML-RARA-RXR oligomers mediate retinoid and rexinoid/cAMP cross-talk in acute promyelocytic leukemia cell differentiation. J Exp Med 199(8):1163–1174. doi:10.1084/jem.20032226, jem.20032226 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kastner P, Chan S (2001) Function of RARalpha during the maturation of neutrophils. Oncogene 20(49):7178–7185. doi:10.1038/sj.onc.1204757

    Article  CAS  PubMed  Google Scholar 

  • Kastner P, Lawrence HJ, Waltzinger C, Ghyselinck NB, Chambon P, Chan S (2001) Positive and negative regulation of granulopoiesis by endogenous RARalpha. Blood 97(5):1314–1320

    Article  CAS  PubMed  Google Scholar 

  • Kelly LM, Kutok JL, Williams IR, Boulton CL, Amaral SM, Curley DP, Ley TJ, Gilliland DG (2002) PML/RARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci U S A 99(12):8283–8288. doi:10.1073/pnas.122233699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kogan SC (2007) Mouse models of acute promyelocytic leukemia. Curr Top Microbiol Immunol 313:3–29

    CAS  PubMed  Google Scholar 

  • Kogan SC, Hong SH, Shultz DB, Privalsky ML, Bishop JM (2000) Leukemia initiated by PMLRARalpha: the PML domain plays a critical role while retinoic acid-mediated transactivation is dispensable. Blood 95(5):1541–1550

    CAS  PubMed  Google Scholar 

  • Koken MH, Puvion-Dutilleul F, Guillemin MC, Viron A, Linares-Cruz G, Stuurman N, de Jong L, Szostecki C, Calvo F, Chomienne C et al (1994) The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J 13(5):1073–1083

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo T, Mori A, Darmanin S, Hashino S, Tanaka J, Asaka M (2008) The seventh pathogenic fusion gene FIP1L1-RARA was isolated from a t(4;17)-positive acute promyelocytic leukemia. Haematologica 93(9):1414–1416. doi:10.3324/haematol.12854

    Article  CAS  PubMed  Google Scholar 

  • Korf K, Wodrich H, Haschke A, Ocampo C, Harder L, Gieseke F, Pollmann A, Dierck K, Prall S, Staege H, Ma H, Horstmann MA, Evans RM, Sternsdorf T (2014) The PML domain of PML-RARalpha blocks senescence to promote leukemia. Proc Natl Acad Sci USA 111(33):12133–12138. doi:10.1073/pnas.1412944111, 1412944111 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo HY, Chang CC, Jeng JC, Hu HM, Lin DY, Maul GG, Kwok RP, Shih HM (2005) SUMO modification negatively modulates the transcriptional activity of CREB-binding protein via the recruitment of Daxx. Proc Natl Acad Sci USA 102(47):16973–16978. doi:10.1073/pnas.0504460102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwok C, Zeisig BB, Dong S, So CW (2006) Forced homo-oligomerization of RARalpha leads to transformation of primary hematopoietic cells. Cancer Cell 9(2):95–108. doi:10.1016/j.ccr.2006.01.005, S1535-6108(06)00027-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Lacoste N, Woolfe A, Tachiwana H, Garea AV, Barth T, Cantaloube S, Kurumizaka H, Imhof A, Almouzni G (2014) Mislocalization of the centromeric histone variant CenH3/CENP-A in human cells depends on the chaperone DAXX. Mol Cell 53(4):631–644. doi:10.1016/j.molcel.2014.01.018

    Article  CAS  PubMed  Google Scholar 

  • Lallemand-Breitenbach V, Zhu J, Puvion F, Koken M, Honore N, Doubeikovsky A, Duprez E, Pandolfi PP, Puvion E, Freemont P, de The H (2001) Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor alpha degradation. J Exp Med 193(12):1361–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Beau MM, Bitts S, Davis EM, Kogan SC (2002) Recurring chromosomal abnormalities in leukemia in PML-RARA transgenic mice parallel human acute promyelocytic leukemia. Blood 99(8):2985–2991

    Article  PubMed  Google Scholar 

  • Licht JD (2006) Reconstructing a disease: What essential features of the retinoic acid receptor fusion oncoproteins generate acute promyelocytic leukemia? Cancer Cell 9(2):73–74. doi:10.1016/j.ccr.2006.01.024, S1535-6108(06)00032-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Lin RJ, Evans RM (2000) Acquisition of oncogenic potential by RAR chimeras in acute promyelocytic leukemia through formation of homodimers. Mol Cell 5(5):821–830, S1097-2765(00)80322-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Lin RJ, Nagy L, Inoue S, Shao W, Miller WH Jr, Evans RM (1998) Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391(6669):811–814. doi:10.1038/35895

    Article  CAS  PubMed  Google Scholar 

  • Lo-Coco F, Avvisati G, Vignetti M, Breccia M, Gallo E, Rambaldi A, Paoloni F, Fioritoni G, Ferrara F, Specchia G, Cimino G, Diverio D, Borlenghi E, Martinelli G, Di Raimondo F, Di Bona E, Fazi P, Peta A, Bosi A, Carella AM, Fabbiano F, Pogliani EM, Petti MC, Amadori S, Mandelli F (2010) Front-line treatment of acute promyelocytic leukemia with AIDA induction followed by risk-adapted consolidation for adults younger than 61 years: results of the AIDA-2000 trial of the GIMEMA Group. Blood 116(17):3171–3179. doi:10.1182/blood-2010-03-276196, blood-2010-03-276196 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Lufkin T, Lohnes D, Mark M, Dierich A, Gorry P, Gaub MP, LeMeur M, Chambon P (1993) High postnatal lethality and testis degeneration in retinoic acid receptor alpha mutant mice. Proc Natl Acad Sci USA 90(15):7225–7229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martens JH, Brinkman AB, Simmer F, Francoijs KJ, Nebbioso A, Ferrara F, Altucci L, Stunnenberg HG (2010) PML-RARalpha/RXR Alters the Epigenetic Landscape in Acute Promyelocytic Leukemia. Cancer Cell 17(2):173–185. doi:10.1016/j.ccr.2009.12.042, S1535-6108(10)00005-X [pii]

    Article  CAS  PubMed  Google Scholar 

  • Matsushita H, Scaglioni PP, Bhaumik M, Rego EM, Cai LF, Majid SM, Miyachi H, Kakizuka A, Miller WH Jr, Pandolfi PP (2006) In vivo analysis of the role of aberrant histone deacetylase recruitment and RAR alpha blockade in the pathogenesis of acute promyelocytic leukemia. J Exp Med 203(4):821–828. doi:10.1084/jem.20050616, jem.20050616 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maze I, Noh KM, Soshnev AA, Allis CD (2014) Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat Rev Genet 15(4):259–271. doi:10.1038/nrg3673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melnick A, Licht JD (1999) Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 93(10):3167–3215

    CAS  PubMed  Google Scholar 

  • Michod D, Bartesaghi S, Khelifi A, Bellodi C, Berliocchi L, Nicotera P, Salomoni P (2012) Calcium-dependent dephosphorylation of the histone chaperone DAXX regulates H3.3 loading and transcription upon neuronal activation. Neuron 74(1):122–135. doi:10.1016/j.neuron.2012.02.021, S0896-6273(12)00188-2 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills AA (2010) Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins. Nat Rev Cancer 10(10):669–682. doi:10.1038/nrc2931, nrc2931 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minucci S, Maccarana M, Cioce M, De Luca P, Gelmetti V, Segalla S, Di Croce L, Giavara S, Matteucci C, Gobbi A, Bianchini A, Colombo E, Schiavoni I, Badaracco G, Hu X, Lazar MA, Landsberger N, Nervi C, Pelicci PG (2000) Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation. Mol Cell 5(5):811–820, S1097-2765(00)80321-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Morey L, Brenner C, Fazi F, Villa R, Gutierrez A, Buschbeck M, Nervi C, Minucci S, Fuks F, Di Croce L (2008) MBD3, a component of the NuRD complex, facilitates chromatin alteration and deposition of epigenetic marks. Mol Cell Biol 28(19):5912–5923. doi:10.1128/MCB.00467-08, MCB.00467-08 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muntean AG, Hess JL (2012) The pathogenesis of mixed-lineage leukemia. Annu Rev Pathol 7:283–301. doi:10.1146/annurev-pathol-011811-132434

    Article  CAS  PubMed  Google Scholar 

  • Nasr R, Guillemin MC, Ferhi O, Soilihi H, Peres L, Berthier C, Rousselot P, Robledo-Sarmiento M, Lallemand-Breitenbach V, Gourmel B, Vitoux D, Pandolfi PP, Rochette-Egly C, Zhu J, de The H (2008) Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nat Med 14(12):1333–1342. doi:10.1038/nm.1891, nm.1891 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Nisole S, Maroui MA, Mascle XH, Aubry M, Chelbi-Alix MK (2013) Differential Roles of PML Isoforms. Front Oncol 3:125. doi:10.3389/fonc.2013.00125

    Article  PubMed  PubMed Central  Google Scholar 

  • Nouzova M, Holtan N, Oshiro MM, Isett RB, Munoz-Rodriguez JL, List AF, Narro ML, Miller SJ, Merchant NC, Futscher BW (2004) Epigenomic changes during leukemia cell differentiation: analysis of histone acetylation and cytosine methylation using CpG island microarrays. J Pharmacol Exp Ther 311(3):968–981. doi:10.1124/jpet.104.072488, jpet.104.072488 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Onodera M, Kunisada T, Nishikawa S, Sakiyama Y, Matsumoto S, Nishikawa S (1995) Overexpression of retinoic acid receptor alpha suppresses myeloid cell differentiation at the promyelocyte stage. Oncogene 11(7):1291–1298

    CAS  PubMed  Google Scholar 

  • Pchelintsev NA, McBryan T, Rai TS, van Tuyn J, Ray-Gallet D, Almouzni G, Adams PD (2013) Placing the HIRA histone chaperone complex in the chromatin landscape. Cell Rep 3(4):1012–1019. doi:10.1016/j.celrep.2013.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez A, Kastner P, Sethi S, Lutz Y, Reibel C, Chambon P (1993) PMLRAR homodimers: distinct DNA binding properties and heteromeric interactions with RXR. EMBO j 12(8):3171–3182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puccetti E, Ruthardt M (2004) Acute promyelocytic leukemia: PML/RARalpha and the leukemic stem cell. Leukemia 18(7):1169–1175. doi:10.1038/sj.leu.2403367

    Article  CAS  PubMed  Google Scholar 

  • Puto LA, Reed JC (2008) Daxx represses RelB target promoters via DNA methyltransferase recruitment and DNA hypermethylation. Genes Dev 22(8):998–1010. doi:10.1101/gad.1632208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ (1996) The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood 87(3):882–886

    CAS  PubMed  Google Scholar 

  • Regad T, Bellodi C, Nicotera P, Salomoni P (2009) The tumor suppressor Pml regulates cell fate in the developing neocortex. Nat Neurosci 12(2):132–140. doi:10.1038/nn.2251, nn.2251 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Rego EM, Wang ZG, Peruzzi D, He LZ, Cordon-Cardo C, Pandolfi PP (2001) Role of promyelocytic leukemia (PML) protein in tumor suppression. J Exp Med 193(4):521–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L, Riganelli D, Zanaria E, Messali S, Cainarca S, Guffanti A, Minucci S, Pelicci PG, Ballabio A (2001) The tripartite motif family identifies cell compartments. EMBO J 20(9):2140–2151. doi:10.1093/emboj/20.9.2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice KL, de The H (2014) The acute promyelocytic leukaemia success story: curing leukaemia through targeted therapies. J Intern Med 276(1):61–70. doi:10.1111/joim.12208

    Article  CAS  PubMed  Google Scholar 

  • Saeed S, Logie C, Francoijs KJ, Frige G, Romanenghi M, Nielsen FG, Raats L, Shahhoseini M, Huynen M, Altucci L, Minucci S, Martens JH, Stunnenberg HG (2012) Chromatin accessibility, p300, and histone acetylation define PML-RARalpha and AML1-ETO binding sites in acute myeloid leukemia. Blood 120(15):3058–3068. doi:10.1182/blood-2011-10-386086, blood-2011-10-386086 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Salomoni P (2009) Stemming out of a new PML era? Cell Death Differ 16(8):1083–1092. doi:10.1038/cdd.2009.63

    Article  CAS  PubMed  Google Scholar 

  • Salomoni P (2013) The PML-Interacting Protein DAXX: Histone Loading Gets into the Picture. Front Oncol 3:152. doi:10.3389/fonc.2013.00152

    Article  PubMed  PubMed Central  Google Scholar 

  • Salomoni P, Pandolfi PP (2002) The role of PML in tumor suppression. Cell 108(2):165–170, S0092867402006268 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Salomoni P, Ferguson BJ, Wyllie AH, Rich T (2008) New insights into the role of PML in tumour suppression. Cell Res 18(6):622–640. doi:10.1038/cr.2008.58, cr200858 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Sanz MA, Montesinos P, Rayon C, Holowiecka A, de la Serna J, Milone G, de Lisa E, Brunet S, Rubio V, Ribera JM, Rivas C, Krsnik I, Bergua J, Gonzalez J, Diaz-Mediavilla J, Rojas R, Manso F, Ossenkoppele G, Gonzalez JD, Lowenberg B (2010) Risk-adapted treatment of acute promyelocytic leukemia based on all-trans retinoic acid and anthracycline with addition of cytarabine in consolidation therapy for high-risk patients: further improvements in treatment outcome. Blood 115(25):5137–5146. doi:10.1182/blood-2010-01-266007, blood-2010-01-266007 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Schoofs T, Rohde C, Hebestreit K, Klein HU, Gollner S, Schulze I, Lerdrup M, Dietrich N, Agrawal-Singh S, Witten A, Stoll M, Lengfelder E, Hofmann WK, Schlenke P, Buchner T, Hansen K, Berdel WE, Rosenbauer F, Dugas M, Muller-Tidow C (2013) DNA methylation changes are a late event in acute promyelocytic leukemia and coincide with loss of transcription factor binding. Blood 121(1):178–187. doi:10.1182/blood-2012-08-448860, blood-2012-08-448860 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, Sturm D, Fontebasso AM, Quang DA, Tonjes M, Hovestadt V, Albrecht S, Kool M, Nantel A, Konermann C, Lindroth A, Jager N, Rausch T, Ryzhova M, Korbel JO, Hielscher T, Hauser P, Garami M, Klekner A, Bognar L, Ebinger M, Schuhmann MU, Scheurlen W, Pekrun A, Fruhwald MC, Roggendorf W, Kramm C, Durken M, Atkinson J, Lepage P, Montpetit A, Zakrzewska M, Zakrzewski K, Liberski PP, Dong Z, Siegel P, Kulozik AE, Zapatka M, Guha A, Malkin D, Felsberg J, Reifenberger G, von Deimling A, Ichimura K, Collins VP, Witt H, Milde T, Witt O, Zhang C, Castelo-Branco P, Lichter P, Faury D, Tabori U, Plass C, Majewski J, Pfister SM, Jabado N (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482 (7384):226-231. doi: 10.1038/nature10833. nature10833 [pii]

    Google Scholar 

  • Skene PJ, Henikoff S (2013) Histone variants in pluripotency and disease. Development (Cambridge, England) 140(12):2513–2524. doi:10.1242/dev.091439

    Article  CAS  Google Scholar 

  • Spicuglia S, Vincent-Fabert C, Benoukraf T, Tiberi G, Saurin AJ, Zacarias-Cabeza J, Grimwade D, Mills K, Calmels B, Bertucci F, Sieweke M, Ferrier P, Duprez E (2011) Characterisation of genome-wide PLZF/RARA target genes. PLoS One 6(9), e24176. doi:10.1371/journal.pone.0024176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sternsdorf T, Phan VT, Maunakea ML, Ocampo CB, Sohal J, Silletto A, Galimi F, Le Beau MM, Evans RM, Kogan SC (2006) Forced retinoic acid receptor alpha homodimers prime mice for APL-like leukemia. Cancer Cell 9(2):81–94. doi:10.1016/j.ccr.2005.12.030, S1535-6108(06)00025-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Subramanyam D, Belair CD, Barry-Holson KQ, Lin H, Kogan SC, Passegue E, Blelloch R (2010) PML-RAR{alpha} and Dnmt3a1 cooperate in vivo to promote acute promyelocytic leukemia. Cancer Res 70(21):8792–8801. doi:10.1158/0008-5472.CAN-08-4481, 0008-5472.CAN-08-4481 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szenker E, Ray-Gallet D, Almouzni G (2011) The double face of the histone variant H3.3. Cell Res 21(3):421–434. doi:10.1038/cr.2011.14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabe Y, Konopleva M, Contractor R, Munsell M, Schober WD, Jin L, Tsutsumi-Ishii Y, Nagaoka I, Igari J, Andreeff M (2006) Up-regulation of MDR1 and induction of doxorubicin resistance by histone deacetylase inhibitor depsipeptide (FK228) and ATRA in acute promyelocytic leukemia cells. Blood 107(4):1546–1554. doi:10.1182/blood-2004-10-4126, 2004-10-4126 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teofili L, Martini M, Luongo M, Diverio D, Capelli G, Breccia M, Lo Coco F, Leone G, Larocca LM (2003) Hypermethylation of GpG islands in the promoter region of p15(INK4b) in acute promyelocytic leukemia represses p15(INK4b) expression and correlates with poor prognosis. Leukemia 17(5):919–924. doi:10.1038/sj.leu.2402907, 2402907 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Torok D, Ching RW, Bazett-Jones DP (2009) PML nuclear bodies as sites of epigenetic regulation. Front Biosci (Landmark Ed) 14:1325–1336, 3311 [pii]

    Article  CAS  Google Scholar 

  • Villa R, De Santis F, Gutierrez A, Minucci S, Pelicci PG, Di Croce L (2004) Epigenetic gene silencing in acute promyelocytic leukemia. Biochem Pharmacol 68(6):1247–1254. doi:10.1016/j.bcp.2004.05.041, S0006295204003831 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Villa R, Pasini D, Gutierrez A, Morey L, Occhionorelli M, Vire E, Nomdedeu JF, Jenuwein T, Pelicci PG, Minucci S, Fuks F, Helin K, Di Croce L (2007) Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell 11(6):513–525. doi:10.1016/j.ccr.2007.04.009, S1535-6108(07)00116-X [pii]

    Article  CAS  PubMed  Google Scholar 

  • Vitaliano-Prunier A, Halftermeyer J, Ablain J, de Reynies A, Peres L, Le Bras M, Metzger D, de The H (2014) Clearance of PML/RARA-bound promoters suffice to initiate APL differentiation. Blood. doi:10.1182/blood-2014-03-561852

    PubMed  Google Scholar 

  • Walter MJ, Park JS, Lau SK, Li X, Lane AA, Nagarajan R, Shannon WD, Ley TJ (2004) Expression profiling of murine acute promyelocytic leukemia cells reveals multiple model-dependent progression signatures. Mol Cell Biol 24(24):10882–10893. doi:10.1128/MCB.24.24.10882-10893.2004, 24/24/10882 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZG, Delva L, Gaboli M, Rivi R, Giorgio M, Cordon-Cardo C, Grosveld F, Pandolfi PP (1998) Role of PML in cell growth and the retinoic acid pathway. Science 279(5356):1547–1551

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Wang P, Shi J, Zhu X, He M, Jia X, Yang X, Qiu F, Jin W, Qian M, Fang H, Mi J, Xiao H, Minden M, Du Y, Chen Z, Zhang J (2010) PML/RARalpha targets promoter regions containing PU.1 consensus and RARE half sites in acute promyelocytic leukemia. Cancer Cell 17(2):186–197. doi:10.1016/j.ccr.2009.12.045, S1535-6108(10)00008-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Wells RA, Catzavelos C, Kamel-Reid S (1997) Fusion of retinoic acid receptor alpha to NuMA, the nuclear mitotic apparatus protein, by a variant translocation in acute promyelocytic leukaemia. Nat Genet 17(1):109–113. doi:10.1038/ng0997-109

    Article  CAS  PubMed  Google Scholar 

  • Westervelt P, Lane AA, Pollock JL, Oldfather K, Holt MS, Zimonjic DB, Popescu NC, DiPersio JF, Ley TJ (2003) High-penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARalpha expression. Blood 102(5):1857–1865. doi:10.1182/blood-2002-12-3779

    Article  CAS  PubMed  Google Scholar 

  • Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, Weisenberger DJ, Campan M, Young J, Jacobs I, Laird PW (2007) Epigenetic stem cell signature in cancer. Nat Genet 39(2):157–158. doi:10.1038/ng1941, ng1941 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Wojiski S, Guibal FC, Kindler T, Lee BH, Jesneck JL, Fabian A, Tenen DG, Gilliland DG (2009) PML-RARalpha initiates leukemia by conferring properties of self-renewal to committed promyelocytic progenitors. Leukemia 23(8):1462–1471. doi:10.1038/leu.2009.63, leu200963 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolyniec K, Carney DA, Haupt S, Haupt Y (2013) New Strategies to Direct Therapeutic Targeting of PML to Treat Cancers. Front Oncol 3:124. doi:10.3389/fonc.2013.00124

    Article  PubMed  PubMed Central  Google Scholar 

  • Won D, Shin SY, Park CJ, Jang S, Chi HS, Lee KH, Lee JO, Seo EJ (2013) OBFC2A/RARA: a novel fusion gene in variant acute promyelocytic leukemia. Blood 121(8):1432–1435. doi:10.1182/blood-2012-04-423129

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M, Zhang J, Gajjar A, Dyer MA, Mullighan CG, Gilbertson RJ, Mardis ER, Wilson RK, Downing JR, Ellison DW, Baker SJ (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44(3):251–253. doi:10.1038/ng.1102, ng.1102 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto Y, Tsuzuki S, Tsuzuki M, Handa K, Inaguma Y, Emi N (2010) BCOR as a novel fusion partner of retinoic acid receptor alpha in a t(X;17)(p11;q12) variant of acute promyelocytic leukemia. Blood 116(20):4274–4283. doi:10.1182/blood-2010-01-264432

    Article  CAS  PubMed  Google Scholar 

  • Yuan W, Payton JE, Holt MS, Link DC, Watson MA, DiPersio JF, Ley TJ (2007) Commonly dysregulated genes in murine APL cells. Blood 109(3):961–970. doi:10.1182/blood-2006-07-036640, blood-2006-07-036640 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuen BT, Knoepfler PS (2013) Histone H3.3 mutations: a variant path to cancer. Cancer Cell 24(5):567–574. doi:10.1016/j.ccr.2013.09.015

    Article  CAS  PubMed  Google Scholar 

  • Zeisig BB, Kwok C, Zelent A, Shankaranarayanan P, Gronemeyer H, Dong S, So CW (2007) Recruitment of RXR by homotetrameric RARalpha fusion proteins is essential for transformation. Cancer Cell 12(1):36–51. doi:10.1016/j.ccr.2007.06.006, S1535-6108(07)00175-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, He J, Li J, Tian D, Gu L, Zhou M (2013) Methylation of RASSF1A gene promoter is regulated by p53 and DAXX. FASEB J 27(1):232–242. doi:10.1096/fj.12-215491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Peres L, Honore N, Nasr R, Zhu J, de The H (2006) Dimerization-induced corepressor binding and relaxed DNA-binding specificity are critical for PML/RARA-induced immortalization. Proc Natl Acad Sci USA 103(24):9238–9243. doi:10.1073/pnas.0603324103, 0603324103 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Koken MH, Quignon F, Chelbi-Alix MK, Degos L, Wang ZY, Chen Z, de The H (1997) Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc Natl Acad Sci USA 94(8):3978–3983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Gianni M, Kopf E, Honore N, Chelbi-Alix M, Koken M, Quignon F, Rochette-Egly C, de The H (1999) Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor alpha (RARalpha) and oncogenic RARalpha fusion proteins. Proc Natl Acad Sci USA 96(26):14807–14812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Zhou J, Peres L, Riaucoux F, Honore N, Kogan S, de The H (2005) A sumoylation site in PML/RARA is essential for leukemic transformation. Cancer Cell 7(2):143–153. doi:10.1016/j.ccr.2005.01.005, S1535-6108(05)00026-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Nasr R, Peres L, Riaucoux-Lormiere F, Honore N, Berthier C, Kamashev D, Zhou J, Vitoux D, Lavau C, de The H (2007) RXR is an essential component of the oncogenic PML/RARA complex in vivo. Cancer Cell 12(1):23–35. doi:10.1016/j.ccr.2007.06.004, S1535-6108(07)00173-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Zimonjic DB, Pollock JL, Westervelt P, Popescu NC, Ley TJ (2000) Acquired, nonrandom chromosomal abnormalities associated with the development of acute promyelocytic leukemia in transgenic mice. Proc Natl Acad Sci USA 97(24):13306–13311. doi:10.1073/pnas.97.24.13306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our collaborator Hugues de The for support and critical discussion. PS lab is supported by the Worldwide Cancer Research, the European Research Council, Medical Research Council, The Brain Tumour Charity. JPH is recipient of a Research Fellowship from the Deutsche Forschungsgemeinschaft (German Research Foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Salomoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hofmann, J.P., Salomoni, P. (2016). Acute Promyelocytic Leukaemia: Epigenetic Function of the PML-RARα Oncogene. In: Bazett-Jones, D., Dellaire, G. (eds) The Functional Nucleus. Springer, Cham. https://doi.org/10.1007/978-3-319-38882-3_4

Download citation

Publish with us

Policies and ethics