Skip to main content

Manipulation of PML Nuclear Bodies and DNA Damage Responses by DNA Viruses

  • Chapter
  • First Online:
The Functional Nucleus

Abstract

To undergo a successful infection, viruses must overcome intrinsic host responses that would otherwise suppress their gene expression or replication. For nuclear viruses, these host responses include promyelocytic leukemia (PML) nuclear bodies (NBs) and DNA damage responses (DDR). DNA viruses have been found to be particularly adept at disabling PML NBs and DDRs in order to overcome their inhibitory effects on viral infection. In addition, DNA viruses often induce and use components of the DDR to augment their own replication. Studying the interplay between viruses and PML NBs and DDRs has been hugely informative in understanding the regulation of these cellular structures and responses and their associated functions. Here we discuss the multiple mechanisms by which DNA viruses manipulate PML NBs and DDRs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson AL, Kenney S (2001) Epstein-Barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies. J Virol 75(5):2388–2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn JH, Hayward GS (1997) The major immediate-early proteins IE1 and IE2 of human cytomegalovirus colocalize with and disrupt PML-associated nuclear bodies at very early times in infected permissive cells. J Virol 71(6):4599–4613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali SH, Kasper JS, Arai T, DeCaprio JA (2004) Cul7/p185/p193 binding to simian virus 40 large T antigen has a role in cellular transformation. J Virol 78(6):2749–2757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amon W, White RE, Farrell PJ (2006) Epstein-Barr virus origin of lytic replication mediates association of replicating episomes with promyelocytic leukaemia protein nuclear bodies and replication compartments. J Gen Virol 87(Pt 5):1133–1137. doi:87/5/1133 [pii] 10.1099/vir.0.81589-0

  • Anacker DC, Gautam D, Gillespie KA, Chappell WH, Moody CA (2014) Productive replication of human papillomavirus 31 requires DNA repair factor Nbs1. J Virol 88(15):8528–8544. doi:10.1128/JVI.00517-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Araujo FD, Stracker TH, Carson CT, Lee DV, Weitzman MD (2005) Adenovirus type 5 E4orf3 protein targets the Mre11 complex to cytoplasmic aggresomes. J Virol 79(17):11382–11391. doi:79/17/11382 [pii] 10.1128/JVI.79.17.11382-11391.2005

  • Bailey SG, Verrall E, Schelcher C, Rhie A, Doherty AJ, Sinclair AJ (2009) Functional interaction between Epstein-Barr virus replication protein Zta and host DNA damage response protein 53BP1. J Virol 83(21):11116–11122. doi:JVI.00512-09 [pii] 10.1128/JVI.00512-09

  • Balasubramanian N, Bai P, Buchek G, Korza G, Weller SK (2010) Physical interaction between the herpes simplex virus type 1 exonuclease, UL12, and the DNA double-strand break-sensing MRN complex. J Virol 84(24):12504–12514. doi:10.1128/JVI.01506-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bargonetti J, Reynisdottir I, Friedman PN, Prives C (1992) Site-specific binding of wild-type p53 to cellular DNA is inhibited by SV40 T antigen and mutant p53. Genes Dev 6(10):1886–1898

    Article  CAS  PubMed  Google Scholar 

  • Bartocci C, Denchi EL (2013) Put a RING on it: regulation and inhibition of RNF8 and RNF168 RING finger E3 ligases at DNA damage sites. Front Genet 4:128. doi:10.3389/fgene.2013.00128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bell P, Lieberman PM, Maul GG (2000) Lytic but not latent replication of Epstein-Barr virus is associated with PML and induces sequential release of nuclear domain 10 proteins. J Virol 74(24):11800–11810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bester AC, Roniger M, Oren YS, Im MM, Sarni D, Chaoat M, Bensimon A, Zamir G, Shewach DS, Kerem B (2011) Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145(3):435–446. doi:10.1016/j.cell.2011.03.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boichuk S, Hu L, Hein J, Gjoerup OV (2010) Multiple DNA damage signaling and repair pathways deregulated by simian virus 40 large T antigen. J Virol 84(16):8007–8020. doi:10.1128/JVI.00334-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonilla WV, Pinschewer DD, Klenerman P, Rousson V, Gaboli M, Pandolfi PP, Zinkernagel RM, Salvato MS, Hengartner H (2002) Effects of promyelocytic leukemia protein on virus-host balance. J Virol 76(8):3810–3818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boutell C, Sadis S, Everett RD (2002) Herpes simplex virus type 1 immediate-early protein ICP0 and is isolated RING finger domain act as ubiquitin E3 ligases in vitro. J Virol 76(2):841–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boutell C, Orr A, Everett RD (2003) PML residue lysine 160 is required for the degradation of PML induced by herpes simplex virus type 1 regulatory protein ICP0. J Virol 77(16):8686–8694

    Article  PubMed  PubMed Central  Google Scholar 

  • Boutell C, Cuchet-Lourenco D, Vanni E, Orr A, Glass M, McFarlane S, Everett RD (2011) A viral ubiquitin ligase has substrate preferential SUMO targeted ubiquitin ligase activity that counteracts intrinsic antiviral defence. PLoS Pathog 7(9), e1002245. doi:10.1371/journal.ppat.1002245, PPATHOGENS-D-11-00546 [pii]

    Google Scholar 

  • Bowling BL, Adamson AL (2006) Functional interactions between the Epstein-Barr virus BZLF1 protein and the promyelocytic leukemia protein. Virus Res 117(2):244–253. doi:S0168-1702(05)00332-1 [pii] 10.1016/j.virusres.2005.10.018

  • Burgess RC, Misteli T (2015) Not all DDRs are created equal: non-canonical DNA damage responses. Cell 162(5):944–947. doi:10.1016/j.cell.2015.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantrell SR, Bresnahan WA (2006) Human cytomegalovirus (HCMV) UL82 gene product (pp 71) relieves hDaxx-mediated repression of HCMV replication. J Virol 80(12):6188–6191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao JY, Mansouri S, Frappier L (2012) Changes in the nasopharyngeal carcinoma nuclear proteome induced by the EBNA1 protein of Epstein-Barr virus reveal potential roles for EBNA1 in metastasis and oxidative stress responses. J Virol 86(1):382–394. doi:10.1128/JVI.05648-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carson CT, Orazio NI, Lee DV, Suh J, Bekker-Jensen S, Araujo FD, Lakdawala SS, Lilley CE, Bartek J, Lukas J, Weitzman MD (2009) Mislocalization of the MRN complex prevents ATR signaling during adenovirus infection. Embo J 28(6):652–662. doi:10.1038/emboj.2009.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho T, Seeler JS, Ohman K, Jordan P, Pettersson U, Akusjarvi G, Carmo-Fonseca M, Dejean A (1995) Targeting of adenovirus E1A and E4-ORF3 proteins to nuclear matrix-associated PML bodies. J Cell Biol 131(1):45–56

    Article  CAS  PubMed  Google Scholar 

  • Catez F, Picard C, Held K, Gross S, Rousseau A, Theil D, Sawtell N, Labetoulle M, Lomonte P (2012) HSV-1 genome subnuclear positioning and associations with host-cell PML-NBs and centromeres regulate LAT locus transcription during latency in neurons. PLoS Pathog 8(8), e1002852. doi:10.1371/journal.ppat.1002852 PPATHOGENS-D-12-00913

  • Chang LK, Lee YH, Cheng TS, Hong YR, Lu PJ, Wang JJ, Wang WH, Kuo CW, Li SS, Liu ST (2004) Post-translational modification of Rta of Epstein-Barr virus by SUMO-1. J Biol Chem 279(37):38803–38812. doi:10.1074/jbc.M405470200

    Article  CAS  PubMed  Google Scholar 

  • Chaurushiya MS, Lilley CE, Aslanian A, Meisenhelder J, Scott DC, Landry S, Ticau S, Boutell C, Yates JR 3rd, Schulman BA, Hunter T, Weitzman MD (2012) Viral E3 ubiquitin ligase-mediated degradation of a cellular E3: viral mimicry of a cellular phosphorylation mark targets the RNF8 FHA domain. Mol Cell 46(1):79–90. doi:10.1016/j.molcel.2012.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chelbi-Alix MK, Pelicano L, Quignon F, Koken MH, Venturini L, Stadler M, Pavlovic J, Degos L, de Thé H (1995) Induction of the PML protein by interferons in normal and APL cells. Leukemia 9(12):2027–2033

    CAS  PubMed  Google Scholar 

  • Chelbi-Alix MK, Quignon F, Pelicano L, Koken MH, de Thé H (1998) Resistance to virus infection conferred by the interferon-induced promyelocytic leukemia protein. J Virol 72(2):1043–1051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhuri T, Verma SC, Lan K, Murakami M, Robertson ES (2007) The ATM/ATR signaling effector Chk2 is targeted by Epstein-Barr virus nuclear antigen 3C to release the G2/M cell cycle block. J Virol 81(12):6718–6730. doi:JVI.00053-07

    Google Scholar 

  • Chudasama P, Konrad A, Jochmann R, Lausen B, Holz P, Naschberger E, Neipel F, Britzen-Laurent N, Sturzl M (2014) Structural proteins of Kaposi’s sarcoma-associated herpesvirus antagonize p53-mediated apoptosis. Oncogene. doi:10.1038/onc.2013.595

    PubMed  Google Scholar 

  • Cuchet D, Sykes A, Nicolas A, Orr A, Murray J, Sirma H, Heeren J, Bartelt A, Everett RD (2011) PML isoforms I and II participate in PML-dependent restriction of HSV-1 replication. J Cell Sci 124(Pt 2):280–291. doi:10.1242/jcs.075390

    Article  CAS  PubMed  Google Scholar 

  • Cuchet-Lourenco D, Vanni E, Glass M, Orr A, Everett RD (2012) Herpes simplex virus 1 ubiquitin ligase ICP0 interacts with PML isoform I and induces its SUMO-independent degradation. J Virol 86(20):11209–11222. doi:JVI.01145-12

    Google Scholar 

  • Dahl J, You J, Benjamin TL (2005) Induction and utilization of an ATM signaling pathway by polyomavirus. J Virol 79(20):13007–13017. doi:79/20/13007

    Google Scholar 

  • Daikoku T, Kudoh A, Sugaya Y, Iwahori S, Shirata N, Isomura H, Tsurumi T (2006) Postreplicative mismatch repair factors are recruited to Epstein-Barr virus replication compartments. J Biol Chem 281(16):11422–11430

    Article  CAS  PubMed  Google Scholar 

  • Dey D, Dahl J, Cho S, Benjamin TL (2002) Induction and bypass of p53 during productive infection by polyomavirus. J Virol 76(18):9526–9532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dheekollu J, Deng Z, Wiedmer A, Weitzman MD, Lieberman PM (2007) A role for MRE11, NBS1, and recombination junctions in replication and stable maintenance of EBV episomes. PLoS ONE 2(12), e1257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Djavani M, Rodas J, Lukashevich IS, Horejsh D, Pandolfi PP, Borden KL, Salvato MS (2001) Role of the promyelocytic leukemia protein PML in the interferon sensitivity of lymphocytic choriomeningitis virus. J Virol 75(13):6204–6208. doi:10.1128/JVI.75.13.6204-6208.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doherty J, Freund R (1997) Polyomavirus large T antigen overcomes p53 dependent growth arrest. Oncogene 14(16):1923–1931. doi:10.1038/sj.onc.1201025

    Article  CAS  PubMed  Google Scholar 

  • Doucas V, Ishov AM, Romo A, Juguilon H, Weitzman MD, Evans RM, Maul GG (1996) Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure. Genes Dev 10(2):196–207

    Article  CAS  PubMed  Google Scholar 

  • Xiaofei E, Pickering MT, Debatis M, Castillo J, Lagadinos A, Wang S, Lu S, Kowalik TF (2011) An E2F1-mediated DNA damage response contributes to the replication of human cytomegalovirus. PLoS Pathog 7(5), e1001342. doi:10.1371/journal.ppat.1001342

    Article  CAS  Google Scholar 

  • El McHichi B, Regad T, Maroui MA, Rodriguez MS, Aminev A, Gerbaud S, Escriou N, Dianoux L, Chelbi-Alix MK (2010) SUMOylation promotes PML degradation during encephalomyocarditis virus infection. J Virol 84(22):11634–11645. doi:10.1128/JVI.01321-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evans JD, Hearing P (2003) Distinct roles of the Adenovirus E4 ORF3 protein in viral DNA replication and inhibition of genome concatenation. J Virol 77(9):5295–5304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everett RD (2000) ICP0, a regulator of herpes simplex virus during lytic and latent infection. Bioessays 22(8):761–770

    Article  CAS  PubMed  Google Scholar 

  • Everett RD, Chelbi-Alix MK (2007) PML and PML nuclear bodies: implications in antiviral defence. Biochimie 89(6–7):819–830

    Article  CAS  PubMed  Google Scholar 

  • Everett RD, Maul GG (1994) HSV-1IE protein Vmw110 causes redistribution of PML. Embo J 13(21):5062–5069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Everett RD, Murray J (2005) ND10 components relocate to sites associated with herpes simplex virus type 1 nucleoprotein complexes during virus infection. J Virol 79(8):5078–5089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everett R, Meredith M, Orr A, Cross A, Kathoria M, Parkinson J (1997) A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. EMBO J 16:1519–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everett RD, Freemont P, Saitoh H, Dasso M, Orr A, Kathoria M, Parkinson J (1998) The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms. J Virol 72(8):6581–6591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Everett RD, Rechter S, Papior P, Tavalai N, Stamminger T, Orr A (2006) PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0. J Virol 80(16):7995–8005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everett RD, Parada C, Gripon P, Sirma H, Orr A (2008) Replication of ICP0-null mutant herpes simplex virus type 1 is restricted by both PML and Sp100. J Virol 82(6):2661–2672. doi:JVI.02308-07

    Google Scholar 

  • Everett RD, Parsy ML, Orr A (2009) Analysis of the functions of herpes simplex virus type 1 regulatory protein ICP0 that are critical for lytic infection and derepression of quiescent viral genomes. J Virol 83(10):4963–4977. doi:10.1128/JVI.02593-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everett RD, Boutell C, McNair C, Grant L, Orr A (2010) Comparison of the biological and biochemical activities of several members of the alphaherpesvirus ICP0 family of proteins. J Virol 84(7):3476–3487. doi:10.1128/JVI.02544-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fradet-Turcotte A, Bergeron-Labrecque F, Moody CA, Lehoux M, Laimins LA, Archambault J (2011) Nuclear accumulation of the papillomavirus E1 helicase blocks S-phase progression and triggers an ATM-dependent DNA damage response. J Virol 85(17):8996–9012. doi:10.1128/JVI.00542-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Full F, Reuter N, Zielke K, Stamminger T, Ensser A (2012) Herpesvirus saimiri antagonizes nuclear domain 10-instituted intrinsic immunity via an ORF3-mediated selective degradation of cellular protein Sp100. J Virol 86(7):3541–3553. doi:10.1128/JVI.06992-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Full F, Jungnickl D, Reuter N, Bogner E, Brulois K, Scholz B, Sturzl M, Myoung J, Jung JU, Stamminger T, Ensser A (2014) Kaposi’s sarcoma associated herpesvirus tegument protein ORF75 is essential for viral lytic replication and plays a critical role in the antagonization of ND10-instituted intrinsic immunity. PLoS Pathog 10(1), e1003863. doi:10.1371/journal.ppat.1003863 PPATHOGENS-D-13-01510

  • Gautam D, Bridge E (2013) The kinase activity of ataxia-telangiectasia mutated interferes with adenovirus E4 mutant DNA replication. J Virol 87(15):8687–8696. doi:10.1128/JVI.00376-13 JVI.00376-13 [pii]

  • Geoffroy MC, Chelbi-Alix MK (2011) Role of promyelocytic leukemia protein in host antiviral defense. J Interferon Cytokine Res 31(1):145–158. doi:10.1089/jir.2010.0111

    Article  CAS  PubMed  Google Scholar 

  • Gillespie KA, Mehta KP, Laimins LA, Moody CA (2012) Human papillomaviruses recruit cellular DNA repair and homologous recombination factors to viral replication centers. J Virol 86(17):9520–9526. doi:10.1128/JVI.00247-12 JVI.00247-12 [pii]

  • Glass M, Everett RD (2013) Components of promyelocytic leukemia nuclear bodies (ND10) act cooperatively to repress herpesvirus infection. J Virol 87(4):2174–2185. doi:10.1128/JVI.02950-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruhne B, Sompallae R, Masucci MG (2009) Three Epstein-Barr virus latency proteins independently promote genomic instability by inducing DNA damage, inhibiting DNA repair and inactivating cell cycle checkpoints. Oncogene 28(45):3997–4008. doi:10.1038/onc.2009.258

    Article  CAS  PubMed  Google Scholar 

  • Hagemeier SR, Barlow EA, Meng Q, Kenney SC (2012) The cellular ataxia telangiectasia-mutated kinase promotes Epstein-Barr virus lytic reactivation in response to multiple different types of lytic reactivation-inducing stimuli. J Virol 86(24):13360–13370. doi:10.1128/JVI.01850-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harada JN, Shevchenko A, Pallas DC, Berk AJ (2002) Analysis of the adenovirus E1B-55K-anchored proteome reveals its link to ubiquitination machinery. J Virol 76(18):9194–9206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hau PM, Deng W, Jia L, Yang J, Tsurumi T, Chiang AK, Huen MS, Tsao SW (2015) Role of ATM in the formation of the replication compartment during lytic replication of Epstein-Barr virus in nasopharyngeal epithelial cells. J Virol 89(1):652–668. doi:10.1128/JVI.01437-14

    Article  PubMed  CAS  Google Scholar 

  • Hein J, Boichuk S, Wu J, Cheng Y, Freire R, Jat PS, Roberts TM, Gjoerup OV (2009) Simian virus 40 large T antigen disrupts genome integrity and activates a DNA damage response via Bub1 binding. J Virol 83(1):117–127. doi:10.1128/JVI.01515-08

    Article  CAS  PubMed  Google Scholar 

  • Hofmann H, Sindre H, Stamminger T (2002) Functional interaction between the pp 71 protein of human cytomegalovirus and the PML-interacting protein human Daxx. J Virol 76(11):5769–5783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollingworth R, Grand RJ (2015) Modulation of DNA damage and repair pathways by human tumour viruses. Viruses 7(5):2542–2591. doi:10.3390/v7052542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollingworth R, Skalka GL, Stewart GS, Hislop AD, Blackbourn DJ, Grand RJ (2015) Activation of DNA damage response pathways during lytic replication of KSHV. Viruses 7(6):2908–2927. doi:10.3390/v7062752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holowaty MN, Sheng Y, Nguyen T, Arrowsmith C, Frappier L (2003) Protein interaction domains of the ubiquitin-specific protease, USP7/HAUSP. J Biol Chem 278(48):47753–47761. doi:10.1074/jbc.M307200200

    Article  CAS  PubMed  Google Scholar 

  • Hong S, Laimins LA (2013) The JAK-STAT transcriptional regulator, STAT-5, activates the ATM DNA damage pathway to induce HPV 31 genome amplification upon epithelial differentiation. PLoS Pathog 9(4), e1003295. doi:10.1371/journal.ppat.1003295 PPATHOGENS-D-12-02723

  • Hwang J, Kalejta RF (2007) Proteasome-dependent, ubiquitin-independent degradation of Daxx by the viral pp 71 protein in human cytomegalovirus-infected cells. Virology 367(2):334–338

    Article  CAS  PubMed  Google Scholar 

  • Hwang J, Kalejta RF (2009) Human cytomegalovirus protein pp 71 induces Daxx SUMOylation. J Virol 83(13):6591–6598. doi:10.1128/JVI.02639-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishov AM, Maul GG (1996) The periphery of nuclear domain 10 (ND10) as site of DNA virus deposition. J Cell Biol 134(4):815–826

    Article  CAS  PubMed  Google Scholar 

  • Ishov AM, Stenberg RM, Maul GG (1997) Human cytomegalovirus immediate early interaction with host nuclear structures: definition of an immediate transcript environment. J Cell Biol 138(1):5–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishov AM, Vladimirova OV, Maul GG (2002) Daxx-mediated accumulation of human cytomegalovirus tegument protein pp 71 at ND10 facilitates initiation of viral infection at these nuclear domains. J Virol 76(15):7705–7712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izumiya Y, Kobayashi K, Kim KY, Pochampalli M, Izumiya C, Shevchenko B, Wang DH, Huerta SB, Martinez A, Campbell M, Kung HJ (2013) Kaposi’s sarcoma-associated herpesvirus K-Rta exhibits SUMO-targeting ubiquitin ligase (STUbL) like activity and is essential for viral reactivation. PLoS Pathog 9(8), e1003506. doi:10.1371/journal.ppat.1003506 PPATHOGENS-D-12-01048

  • Jha HC, Upadhyay SK, Prasad AJ, Lu J, Cai Q, Saha A, Robertson ES (2013) H2AX phosphorylation is important for LANA-mediated Kaposi’s sarcoma-associated herpesvirus episome persistence. J Virol 87(9):5255–5269. doi:10.1128/JVI.03575-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang D, Srinivasan A, Lozano G, Robbins PD (1993) SV40 T antigen abrogates p53-mediated transcriptional activity. Oncogene 8(10):2805–2812

    CAS  PubMed  Google Scholar 

  • Jiang M, Zhao L, Gamez M, Imperiale MJ (2012) Roles of ATM and ATR-mediated DNA damage responses during lytic BK polyomavirus infection. PLoS Pathog 8(8), e1002898. doi:10.1371/journal.ppat.1002898 PPATHOGENS-D-12-00806

  • Justice JL, Verhalen B, Jiang M (2015) Polyomavirus interaction with the DNA damage response. Virol Sin 30(2):122–129. doi:10.1007/s12250-015-3583-6

    Article  CAS  PubMed  Google Scholar 

  • Kang H, Kim ET, Lee HR, Park JJ, Go YY, Choi CY, Ahn JH (2006) Inhibition of SUMO-independent PML oligomerization by the human cytomegalovirus IE1 protein. J Gen Virol 87(Pt 8):2181–2190. doi:87/8/2181 [pii]

    Google Scholar 

  • Kho EY, Wang HK, Banerjee NS, Broker TR, Chow LT (2013) HPV-18 E6 mutants reveal p53 modulation of viral DNA amplification in organotypic cultures. Proc Natl Acad Sci U S A 110(19):7542–7549. doi:10.1073/pnas.1304855110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koopal S, Furuhjelm JH, Jarviluoma A, Jaamaa S, Pyakurel P, Pussinen C, Wirzenius M, Biberfeld P, Alitalo K, Laiho M, Ojala PM (2007) Viral oncogene-induced DNA damage response is activated in Kaposi sarcoma tumorigenesis. PLoS Pathog 3(9):1348–1360. doi:07-PLPA-RA-0224 10.1371/journal.ppat.0030140

  • Korioth F, Maul GG, Plachter B, Stamminger T, Frey J (1996) The nuclear domain 10 (ND10) is disrupted by the human cytomegalovirus gene product IE1. Exp Cell Res 229(1):155–158. doi:S0014-4827(96)90353-5

    Google Scholar 

  • Kudoh A, Fujita M, Zhang L, Shirata N, Daikoku T, Sugaya Y, Isomura H, Nishiyama Y, Tsurumi T (2005) Epstein-Barr virus lytic replication elicits ATM checkpoint signal transduction while providing an S-phase-like cellular environment. J Biol Chem 280(9):8156–8163

    Article  CAS  PubMed  Google Scholar 

  • Kudoh A, Iwahori S, Sato Y, Nakayama S, Isomura H, Murata T, Tsurumi T (2009) Homologous recombinational repair factors are recruited and loaded onto the viral DNA genome in Epstein-Barr virus replication compartments. J Virol 83(13):6641–6651. doi:10.1128/JVI.00049-09JVI

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuny CV, Chinchilla K, Culbertson MR, Kalejta RF (2010) Cyclin-dependent kinase-like function is shared by the beta- and gamma-subset of the conserved herpesvirus protein kinases. PLoS Pathog 6(9), e1001092. doi:10.1371/journal.ppat.1001092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kyratsous CA, Silverstein SJ (2009) Components of nuclear domain 10 bodies regulate varicella-zoster virus replication. J Virol 83(9):4262–4274. doi:10.1128/JVI.00021-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyratsous CA, Walters MS, Panagiotidis CA, Silverstein SJ (2009) Complementation of a herpes simplex virus ICP0 null mutant by varicella-zoster virus ORF61p. J Virol 83(20):10637–10643. doi:10.1128/JVI.01144-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavau C, Marchio A, Fagioli M, Jansen J, Falini B, Lebon P, Grosveld F, Pandolfi PP, Pelicci PG, Dejean A (1995) The acute promyelocytic leukaemia-associated PML gene is induced by interferon. Oncogene 11(5):871–876

    CAS  PubMed  Google Scholar 

  • Lee HR, Kim DJ, Lee JM, Choi CY, Ahn BY, Hayward GS, Ahn JH (2004) Ability of the human cytomegalovirus IE1 protein to modulate sumoylation of PML correlates with its functional activities in transcriptional regulation and infectivity in cultured fibroblast cells. J Virol 78(12):6527–6542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepik D, Ilves I, Kristjuhan A, Maimets T, Ustav M (1998) p53 protein is a suppressor of papillomavirus DNA amplificational replication. J Virol 72(8):6822–6831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leppard KN, Emmott E, Cortese MS, Rich T (2009) Adenovirus type 5 E4 Orf3 protein targets promyelocytic leukaemia (PML) protein nuclear domains for disruption via a sequence in PML isoform II that is predicted as a protein interaction site by bioinformatic analysis. J Gen Virol 90(Pt 1):95–104. doi:10.1099/vir.0.005512-0

    Article  CAS  PubMed  Google Scholar 

  • Li R, Wang L, Liao G, Guzzo CM, Matunis MJ, Zhu H, Hayward SD (2012) SUMO binding by the Epstein-Barr virus protein kinase BGLF4 is crucial for BGLF4 function. J Virol 86(10):5412–5421. doi:10.1128/JVI.00314-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Diaz J, Wang X, Tsang SH, You J (2015) Phosphorylation of Merkel cell polyomavirus large tumor antigen at serine 816 by ATM kinase induces apoptosis in host cells. J Biol Chem 290(3):1874–1884. doi:10.1074/jbc.M114.594895

    Article  PubMed  CAS  Google Scholar 

  • Lilley CE, Carson CT, Muotri AR, Gage FH, Weitzman MD (2005) DNA repair proteins affect the lifecycle of herpes simplex virus 1. Proc Natl Acad Sci U S A 102(16):5844–5849. doi:0501916102

    Google Scholar 

  • Lilley CE, Chaurushiya MS, Boutell C, Landry S, Suh J, Panier S, Everett RD, Stewart GS, Durocher D, Weitzman MD (2010) A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. Embo J 29(5):943–955. doi:emboj2009400

    Google Scholar 

  • Lilley CE, Chaurushiya MS, Boutell C, Everett RD, Weitzman MD (2011) The intrinsic antiviral defense to incoming HSV-1 genomes includes specific DNA repair proteins and is counteracted by the viral protein ICP0. PLoS Pathog 7(6), e1002084. doi:10.1371/journal.ppat.1002084 PPATHOGENS-D-11-00124

  • Ling PD, Peng RS, Nakajima A, Yu JH, Tan J, Moses SM, Yang WH, Zhao B, Kieff E, Bloch KD, Bloch DB (2005) Mediation of Epstein-Barr virus EBNA-LP transcriptional coactivation by Sp100. Embo J 24(20):3565–3575. doi:7600820

    Google Scholar 

  • Ling PD, Tan J, Sewatanon J, Peng R (2008) Murine gammaherpesvirus 68 open reading frame 75c tegument protein induces the degradation of PML and is essential for production of infectious virus. J Virol 82(16):8000–8012. doi:10.1128/JVI.02752-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Biegalke BJ (2002) The human cytomegalovirus UL35 gene encodes two proteins with different functions. J Virol 76(5):2460–2468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Shevchenko A, Berk AJ (2005) Adenovirus exploits the cellular aggresome response to accelerate inactivation of the MRN complex. J Virol 79(22):14004–14016. doi:79/22/14004

    Google Scholar 

  • Lukashchuk V, McFarlane S, Everett RD, Preston CM (2008) Human cytomegalovirus protein pp 71 displaces the chromatin-associated factor ATRX from nuclear domain 10 at early stages of infection. J Virol 82(24):12543–12554. doi:10.1128/JVI.01215-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo K, Ehrlich E, Xiao Z, Zhang W, Ketner G, Yu XF (2007a) Adenovirus E4orf6 assembles with Cullin5-ElonginB-ElonginC E3 ubiquitin ligase through an HIV/SIV Vif-like BC-box to regulate p53. Faseb J 21(8):1742–1750. doi:fj.06-7241com

    Google Scholar 

  • Luo MH, Rosenke K, Czornak K, Fortunato EA (2007b) Human cytomegalovirus disrupts both ataxia telangiectasia mutated protein (ATM)- and ATM-Rad3-related kinase-mediated DNA damage responses during lytic infection. J Virol 81(4):1934–1950. doi:JVI.01670-06

    Google Scholar 

  • Marcos-Villar L, Lopitz-Otsoa F, Gallego P, Munoz-Fontela C, Gonzalez-Santamaria J, Campagna M, Shou-Jiang G, Rodriguez MS, Rivas C (2009) Kaposi’s sarcoma-associated herpesvirus protein LANA2 disrupts PML oncogenic domains and inhibits PML-mediated transcriptional repression of the survivin gene. J Virol 83(17):8849–8858. doi:10.1128/JVI.00339-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall KR, Rowley KV, Rinaldi A, Nicholson IP, Ishov AM, Maul GG, Preston CM (2002) Activity and intracellular localization of the human cytomegalovirus protein pp71. J Gen Virol 83(Pt 7):1601–1612

    Article  CAS  PubMed  Google Scholar 

  • Maruzuru Y, Fujii H, Oyama M, Kozuka-Hata H, Kato A, Kawaguchi Y (2013) Roles of p53 in herpes simplex virus 1 replication. J Virol 87(16):9323–9332. doi:10.1128/JVI.01581-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maul GG, Everett RD (1994) The nuclear location of PML, a cellular member of the C3HC4 zinc-binding domain protein family, is rearranged during herpes simplex virus infection by the C3HC4 viral protein ICP0. J Gen Virol 75(Pt 6):1223–1233

    Article  CAS  PubMed  Google Scholar 

  • Maul GG, Guldner HH, Spivack JG (1993) Modification of discrete nuclear domains induced by herpes simplex virus type 1 immediate early gene 1 product (ICP0). J Gen Virol 74(Pt 12):2679–2690

    Article  CAS  PubMed  Google Scholar 

  • Maul GG, Ishov AM, Everett RD (1996) Nuclear domain 10 as preexisting potential replication start sites of herpes simplex virus type-1. Virology 217(1):67–75. doi:S0042-6822(96)90094-X

    Google Scholar 

  • McFadden K, Luftig MA (2013) Interplay between DNA tumor viruses and the host DNA damage response. Curr Top Microbiol Immunol 371:229–257. doi:10.1007/978-3-642-37765-5_9

    CAS  PubMed  Google Scholar 

  • McKinney CC, Hussmann KL, McBride AA (2015) The role of the DNA damage response throughout the Papillomavirus life cycle. Viruses 7(5):2450–2469. doi:10.3390/v7052450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meredith M, Orr A, Everett R (1994) Herpes simplex virus type 1 immediate-early protein Vmw110 binds strongly and specifically to a 135-kDa cellular protein. Virology 200(2):457–469

    Article  CAS  PubMed  Google Scholar 

  • Mitchell AM, Hirsch ML, Li C, Samulski RJ (2014) Promyelocytic leukemia protein is a cell-intrinsic factor inhibiting parvovirus DNA replication. J Virol 88(2):925–936. doi:10.1128/JVI.02922-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohni KN, Livingston CM, Cortez D, Weller SK (2010) ATR and ATRIP are recruited to herpes simplex virus type 1 replication compartments even though ATR signaling is disabled. J Virol 84(23):12152–12164. doi:10.1128/JVI.01643-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohni KN, Mastrocola AS, Bai P, Weller SK, Heinen CD (2011) DNA mismatch repair proteins are required for efficient herpes simplex virus 1 replication. J Virol 85(23):12241–12253. doi:10.1128/JVI.05487-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohni KN, Dee AR, Smith S, Schumacher AJ, Weller SK (2013a) Efficient herpes simplex virus 1 replication requires cellular ATR pathway proteins. J Virol 87(1):531–542. doi:10.1128/JVI.02504-12

    Google Scholar 

  • Mohni KN, Smith S, Dee AR, Schumacher AJ, Weller SK (2013b) Herpes simplex virus type 1 single strand DNA binding protein and helicase/primase complex disable cellular ATR signaling. PLoS Pathog 9 (10):e1003652. doi:10.1371/journal.ppat.1003652 PPATHOGENS-D-13-00621

  • Moody CA, Laimins LA (2009) Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog 5(10), e1000605. doi:10.1371/journal.ppat.1000605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moody CA, Laimins LA (2010) Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 10(8):550–560. doi:10.1038/nrc2886

    Article  CAS  PubMed  Google Scholar 

  • Muller S, Dejean A (1999) Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption. J Virol 73(6):5137–5143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura H, Li M, Zarycki J, Jung JU (2001) Inhibition of p53 tumor suppressor by viral interferon regulatory factor. J Virol 75(16):7572–7582. doi:10.1128/JVI.75.16.7572-7582.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nevels M, Tauber B, Kremmer E, Spruss T, Wolf H, Dobner T (1999) Transforming potential of the adenovirus type 5 E4orf3 protein. J Virol 73(2):1591–1600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nikitin PA, Yan CM, Forte E, Bocedi A, Tourigny JP, White RE, Allday MJ, Patel A, Dave SS, Kim W, Hu K, Guo J, Tainter D, Rusyn E, Luftig MA (2010) An ATM/Chk2-mediated DNA damage-responsive signaling pathway suppresses Epstein-Barr virus transformation of primary human B cells. Cell Host Microbe 8(6):510–522. doi:S1931-3128(10)00377-X

    Google Scholar 

  • Olma MH, Roy M, Le Bihan T, Sumara I, Maerki S, Larsen B, Quadroni M, Peter M, Tyers M, Pintard L (2009) An interaction network of the mammalian COP9 signalosome identifies Dda1 as a core subunit of multiple Cul4-based E3 ligases. J Cell Sci 122(Pt 7):1035–1044. doi:10.1242/jcs.043539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orba Y, Suzuki T, Makino Y, Kubota K, Tanaka S, Kimura T, Sawa H (2010) Large T antigen promotes JC virus replication in G2-arrested cells by inducing ATM- and ATR-mediated G2 checkpoint signaling. J Biol Chem 285(2):1544–1554. doi:10.1074/jbc.M109.064311

    Article  CAS  PubMed  Google Scholar 

  • Ou HD, Kwiatkowski W, Deerinck TJ, Noske A, Blain KY, Land HS, Soria C, Powers CJ, May AP, Shu X, Tsien RY, Fitzpatrick JA, Long JA, Ellisman MH, Choe S, O’Shea CC (2012) A structural basis for the assembly and functions of a viral polymer that inactivates multiple tumor suppressors. Cell 151(2):304–319. doi:10.1016/j.cell.2012.08.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park RB, Androphy EJ (2002) Genetic analysis of high-risk e6 in episomal maintenance of human papillomavirus genomes in primary human keratinocytes. J Virol 76(22):11359–11364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patsalo V, Yondola MA, Luan B, Shoshani I, Kisker C, Green DF, Raleigh DP, Hearing P (2012) Biophysical and functional analyses suggest that adenovirus E4-ORF3 protein requires higher-order multimerization to function against promyelocytic leukemia protein nuclear bodies. J Biol Chem 287(27):22573–22583. doi:10.1074/jbc.M112.344234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S, Higashimoto Y, Appella E, Minucci S, Pandolfi PP, Pelicci PG (2000) PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406(6792):207–210

    Article  CAS  PubMed  Google Scholar 

  • Preston CM, Nicholl MJ (2006) Role of the cellular protein hDaxx in human cytomegalovirus immediate-early gene expression. J Gen Virol 87(Pt 5):1113–1121. doi:87/5/1113

    Google Scholar 

  • Puvion-Dutilleul F, Chelbi-Alix MK, Koken M, Quignon F, Puvion E, de The H (1995) Adenovirus infection induces rearrangements in the intranuclear distribution of the nuclear body-associated PML protein. Exp Cell Res 218(1):9–16. doi:S0014-4827(85)71125-1

    Google Scholar 

  • Querido E, Marcellus RC, Lai A, Charbonneau R, Teodoro JG, Ketner G, Branton PE (1997) Regulation of p53 levels by the E1B 55-kilodalton protein and E4orf6 in adenovirus-infected cells. J Virol 71(5):3788–3798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Querido E, Blanchette P, Yan Q, Kamura T, Morrison M, Boivin D, Kaelin WG, Conaway RC, Conaway JW, Branton PE (2001a) Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev 15(23):3104–3117. doi:10.1101/gad.926401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Querido E, Morrison MR, Chu-Pham-Dang H, Thirlwell SW, Boivin D, Branton PE (2001b) Identification of three functions of the adenovirus e4orf6 protein that mediate p53 degradation by the E4orf6-E1B55K complex. J Virol 75(2):699–709. doi:10.1128/JVI.75.2.699-709.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichelt M, Wang L, Sommer M, Perrino J, Nour AM, Sen N, Baiker A, Zerboni L, Arvin AM (2011) Entrapment of viral capsids in nuclear PML cages is an intrinsic antiviral host defense against varicella-zoster virus. PLoS Pathog 7(2), e1001266. doi:10.1371/journal.ppat.1001266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinson T, Toots M, Kadaja M, Pipitch R, Allik M, Ustav E, Ustav M (2013) Engagement of the ATR-dependent DNA damage response at the human papillomavirus 18 replication centers during the initial amplification. J Virol 87(2):951–964. doi:10.1128/JVI.01943-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saffert RT, Kalejta RF (2006) Inactivating a cellular intrinsic immune defense mediated by Daxx is the mechanism through which the human cytomegalovirus pp 71 protein stimulates viral immediate-early gene expression. J Virol 80(8):3863–3871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saffert RT, Kalejta RF (2007) Human cytomegalovirus gene expression is silenced by Daxx-mediated intrinsic immune defense in model latent infections established in vitro. J Virol 81(17):9109–9120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saffert RT, Kalejta RF (2008) Promyelocytic leukemia-nuclear body proteins: herpesvirus enemies, accomplices, or both? Future Virol 3(3):265–277. doi:10.2217/17460794.3.3.265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakakibara N, Mitra R, McBride AA (2011) The papillomavirus E1 helicase activates a cellular DNA damage response in viral replication foci. J Virol 85(17):8981–8995. doi:10.1128/JVI.00541-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakakibara N, Chen D, McBride AA (2013) Papillomaviruses use recombination-dependent replication to vegetatively amplify their genomes in differentiated cells. PLoS Pathog 9(7), e1003321. doi:10.1371/journal.ppat.1003321 PPATHOGENS-D-13-00367

  • Salsman J, Zimmerman N, Chen T, Domagala M, Frappier L (2008) Genome-wide screen of three herpesviruses for protein subcellular localization and alteration of PML nuclear bodies. PLoS Pathog 4(7), e1000100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salsman J, Wang X, Frappier L (2011) Nuclear body formation and PML body remodeling by the human cytomegalovirus protein UL35. Virology 414(2):119–129. doi:10.1016/j.virol.2011.03.013

    Article  CAS  PubMed  Google Scholar 

  • Salsman J, Jagannathan M, Paladino P, Chan PK, Dellaire G, Raught B, Frappier L (2012) Proteomic profiling of the human cytomegalovirus UL35 gene products reveals a role for UL35 in the DNA repair response. J Virol 86(2):806–820. doi:10.1128/JVI.05442-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saridakis V, Sheng Y, Sarkari F, Holowaty MN, Shire K, Nguyen T, Zhang RG, Liao J, Lee W, Edwards AM, Arrowsmith CH, Frappier L (2005) Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization. Mol Cell 18(1):25–36. doi:S1097-2765(05)01145-7

    Google Scholar 

  • Sarkari F, Wang X, Nguyen T, Frappier L (2011) The herpesvirus associated ubiquitin specific protease, USP7, is a negative regulator of PML proteins and PML nuclear bodies. PLoS ONE 6(1), e16598. doi:10.1371/journal.pone.0016598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scaglioni PP, Yung TM, Cai LF, Erdjument-Bromage H, Kaufman AJ, Singh B, Teruya-Feldstein J, Tempst P, Pandolfi PP (2006) A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126(2):269–283

    Article  CAS  PubMed  Google Scholar 

  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63(6):1129–1136. doi:0092-8674(90)90409-8 [pii]

    Google Scholar 

  • Schierling K, Stamminger T, Mertens T, Winkler M (2004) Human cytomegalovirus tegument proteins pp UL82 (pp71) and ppUL35 interact and cooperatively activate the major immediate-early enhancer. J Virol 78(17):9512–9523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiner S, Wimmer P, Sirma H, Everett RD, Blanchette P, Groitl P, Dobner T (2010) Proteasome-dependent degradation of Daxx by the viral E1B-55K protein in human adenovirus-infected cells. J Virol 84(14):7029–7038. doi:10.1128/JVI.00074-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo T, Park J, Lee D, Hwang SG, Choe J (2001) Viral interferon regulatory factor 1 of Kaposi’s sarcoma-associated herpesvirus binds to p53 and represses p53-dependent transcription and apoptosis. J Virol 75(13):6193–6198. doi:10.1128/JVI.75.13.6193-6198.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sewatanon J, Ling PD (2013) Murine gammaherpesvirus 68 ORF75c contains ubiquitin E3 ligase activity and requires PML SUMOylation but not other known cellular PML regulators, CK2 and E6AP, to mediate PML degradation. Virology 440(2):140–149. doi:10.1016/j.virol.2013.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sewatanon J, Ling PD (2014) Murine gammaherpesvirus 68 encodes a second PML-modifying protein. J Virol 88(6):3591–3597. doi:10.1128/JVI.03081-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shah GA, O’Shea CC (2015) Viral and cellular genomes activate distinct DNA damage responses. Cell 162(5):987–1002. doi:10.1016/j.cell.2015.07.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Dodson GE, Shaikh S, Rundell K, Tibbetts RS (2005) Ataxia-telangiectasia-mutated (ATM) is a T-antigen kinase that controls SV40 viral replication in vivo. J Biol Chem 280(48):40195–40200. doi:C500400200

    Google Scholar 

  • Shin YC, Nakamura H, Liang X, Feng P, Chang H, Kowalik TF, Jung JU (2006) Inhibition of the ATM/p53 signal transduction pathway by Kaposi’s sarcoma-associated herpesvirus interferon regulatory factor 1. J Virol 80(5):2257–2266. doi:80/5/2257

    Google Scholar 

  • Shirata N, Kudoh A, Daikoku T, Tatsumi Y, Fujita M, Kiyono T, Sugaya Y, Isomura H, Ishizaki K, Tsurumi T (2005) Activation of ataxia telangiectasia-mutated DNA damage checkpoint signal transduction elicited by herpes simplex virus infection. J Biol Chem 280(34):30336–30341

    Article  CAS  PubMed  Google Scholar 

  • Sides MD, Block GJ, Shan B, Esteves KC, Lin Z, Flemington EK, Lasky JA (2011) Arsenic mediated disruption of promyelocytic leukemia protein nuclear bodies induces ganciclovir susceptibility in Epstein-Barr positive epithelial cells. Virology 416(1–2):86–97. doi:10.1016/j.virol.2011.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh VV, Dutta D, Ansari MA, Dutta S, Chandran B (2014) Kaposi’s sarcoma-associated herpesvirus induces the ATM and H2AX DNA damage response early during de novo infection of primary endothelial cells, which play roles in latency establishment. J Virol 88(5):2821–2834. doi:10.1128/JVI.03126-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sivachandran N, Sarkari F, Frappier L (2008) Epstein-Barr nuclear antigen 1 contributes to nasopharyngeal carcinoma through disruption of PML nuclear bodies. PLoS Pathog 4(10), e1000170. doi:10.1371/journal.ppat.1000170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sivachandran N, Cao JY, Frappier L (2010) Epstein-Barr virus nuclear antigen 1 hijacks the host kinase CK2 to disrupt PML nuclear bodies. J Virol 84(21):11113–11123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivachandran N, Dawson CW, Young LS, Liu FF, Middeldorp J, Frappier L (2012a) Contributions of the Epstein-Barr virus EBNA1 protein to gastric carcinoma. J Virol 86(1):60–68. doi:JVI.05623-11

    Google Scholar 

  • Sivachandran N, Wang X, Frappier L (2012b) Functions of the Epstein-Barr virus EBNA1 protein in viral reactivation and lytic infection. J Virol 86(11):6146–6158. doi:JVI.00013-12

    Google Scholar 

  • Steegenga WT, Riteco N, Jochemsen AG, Fallaux FJ, Bos JL (1998) The large E1B protein together with the E4orf6 protein target p53 for active degradation in adenovirus infected cells. Oncogene 16(3):349–357. doi:10.1038/sj.onc.1201540

    Article  CAS  PubMed  Google Scholar 

  • Stracker TH, Carson CT, Weitzman MD (2002) Adenovirus oncoproteins inactivate the Mre11-Rad50-NBS1 DNA repair complex. Nature 418(6895):348–352. doi:10.1038/nature00863

    Article  CAS  PubMed  Google Scholar 

  • Stracker TH, Lee DV, Carson CT, Araujo FD, Ornelles DA, Weitzman MD (2005) Serotype-specific reorganization of the Mre11 complex by adenoviral E4orf3 proteins. J Virol 79(11):6664–6673. doi:79/11/6664

    Google Scholar 

  • Tavalai N, Stamminger T (2008) New insights into the role of the subnuclear structure ND10 for viral infection. Biochim Biophys Acta 1783(11):2207–2221. doi:10.1016/j.bbamcr.2008.08.004

    Article  CAS  PubMed  Google Scholar 

  • Tavalai N, Stamminger T (2011) Intrinsic cellular defense mechanisms targeting human cytomegalovirus. Virus Res 157(2):128–133. doi:S0168-1702(10)00361-8

    Google Scholar 

  • Tavalai N, Papior P, Rechter S, Leis M, Stamminger T (2006) Evidence for a role of the cellular ND10 protein PML in mediating intrinsic immunity against human cytomegalovirus infections. J Virol 80(16):8006–8018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai K, Thikmyanova N, Wojcechowskyj JA, Delecluse HJ, Lieberman PM (2011) EBV tegument protein BNRF1 disrupts DAXX-ATRX to activate viral early gene transcription. PLoS Pathog 7(11), e1002376. doi:10.1371/journal.ppat.1002376 PPATHOGENS-D-10-00589

  • Tsang SH, Wang X, Li J, Buck CB, You J (2014) Host DNA damage response factors localize to merkel cell polyomavirus DNA replication sites to support efficient viral DNA replication. J Virol 88(6):3285–3297. doi:10.1128/JVI.03656-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turnell AS, Grand RJ (2012) DNA viruses and the cellular DNA-damage response. J Gen Virol 93(Pt 10):2076–2097. doi:10.1099/vir.0.044412-0

    Article  CAS  PubMed  Google Scholar 

  • Ullman AJ, Hearing P (2008) Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82(15):7325–7335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullman AJ, Reich NC, Hearing P (2007) Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81(9):4744–4752. doi:JVI.02385-06 [pii]

    Google Scholar 

  • Van Sant C, Hagglund R, Lopez P, Roizman B (2001) The infected cell protein 0 of herpes simplex virus 1 dynamically interacts with proteasomes, binds and activates the cdc34 E2 ubiquitin-conjugating enzyme, and possesses in vitro E3 ubiquitin ligase activity. Proc Natl Acad Sci U S A 98(15):8815–8820. doi:10.1073/pnas.161283098

    Article  PubMed  PubMed Central  Google Scholar 

  • Verhalen B, Justice JL, Imperiale MJ, Jiang M (2015) Viral DNA replication-dependent DNA damage response activation during BK polyomavirus infection. J Virol 89(9):5032–5039. doi:10.1128/JVI.03650-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagenknecht N, Reuter N, Scherer M, Reichel A, Muller R, Stamminger T (2015) Contribution of the major ND10 proteins PML, hDaxx and Sp100 to the regulation of human cytomegalovirus latency and lytic replication in the monocytic cell line THP-1. Viruses 7(6):2884–2907. doi:10.3390/v7062751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Oliver SL, Sommer M, Rajamani J, Reichelt M, Arvin AM (2011) Disruption of PML nuclear bodies is mediated by ORF61 SUMO-interacting motifs and required for varicella-zoster virus pathogenesis in skin. PLoS Pathog 7(8), e1002157. doi:10.1371/journal.ppat.1002157 PPATHOGENS-D-11-00011

  • Wang WH, Kuo CW, Chang LK, Hung CC, Chang TH, Liu ST (2015) Assembly of Epstein-Barr virus capsid in promyelocytic leukemia nuclear bodies. J Virol 89(17):8922–8931. doi:JVI.01114-15

    Google Scholar 

  • Wang’ondu R, Teal S, Park R, Heston L, Delecluse H, Miller G (2015) DNA damage signaling is induced in the absence of Epstein-Barr Virus (EBV) lytic DNA replication and in response to expression of ZEBRA. PLoS ONE 10(5), e0126088. doi:10.1371/journal.pone.0126088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wasil LR, Wei L, Chang C, Lan L, Shair KH (2015) Regulation of DNA damage signaling and cell death responses by Epstein-Barr virus Latent Membrane Protein 1 (LMP1) and LMP2A in nasopharyngeal carcinoma cells. J Virol 89(15):7612–7624. doi:10.1128/JVI.00958-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weitzman MD, Lilley CE, Chaurushiya MS (2010) Genomes in conflict: maintaining genome integrity during virus infection. Annu Rev Microbiol 64:61–81. doi:10.1146/annurev.micro.112408.134016

    Article  CAS  PubMed  Google Scholar 

  • Westphal EM, Blackstock W, Feng W, Israel B, Kenney SC (2000) Activation of lytic Epstein-Barr virus (EBV) infection by radiation and sodium butyrate in vitro and in vivo: a potential method for treating EBV-positive malignancies. Cancer Res 60(20):5781–5788

    CAS  PubMed  Google Scholar 

  • Wilkinson DE, Weller SK (2003) The role of DNA recombination in herpes simplex virus DNA replication. IUBMB Life 55(8):451–458. doi:10.1080/15216540310001612237

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson DE, Weller SK (2004) Recruitment of cellular recombination and repair proteins to sites of herpes simplex virus type 1 DNA replication is dependent on the composition of viral proteins within prereplicative sites and correlates with the induction of the DNA damage response. J Virol 78(9):4783–4796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wimmer P, Schreiner S, Everett RD, Sirma H, Groitl P, Dobner T (2010) SUMO modification of E1B-55K oncoprotein regulates isoform-specific binding to the tumour suppressor protein PML. Oncogene 29(40):5511–5522. doi:10.1038/onc.2010.284

    Article  CAS  PubMed  Google Scholar 

  • Wimmer P, Berscheminski J, Blanchette P, Groitl P, Branton PE, Hay RT, Dobner T, Schreiner S (2015) PML isoforms IV and V contribute to adenovirus-mediated oncogenic transformation by functionally inhibiting the tumor-suppressor p53. Oncogene. doi:10.1038/onc.2015.63

    Google Scholar 

  • Woodhall DL, Groves IJ, Reeves MB, Wilkinson G, Sinclair JH (2006) Human Daxx-mediated repression of human cytomegalovirus gene expression correlates with a repressive chromatin structure around the major immediate early promoter. J Biol Chem 281(49):37652–37660. doi:M604273200

    Google Scholar 

  • Wu FY, Ahn JH, Alcendor DJ, Jang WJ, Xiao J, Hayward SD, Hayward GS (2001) Origin-independent assembly of Kaposi’s sarcoma-associated herpesvirus DNA replication compartments in transient cotransfection assays and association with the ORF-K8 protein and cellular PML. J Virol 75(3):1487–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Chen J, Liao Q, Wu Y, Peng C, Chen X (2013) Lytic infection of Kaposi’s sarcoma-associated herpesvirus induces DNA double-strand breaks and impairs non-homologous end joining. J Gen Virol 94(Pt 8):1870–1875. doi:10.1099/vir.0.053033-0

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Ahn JH, Cheng M, Aprhys CM, Chiou CJ, Zong J, Matunis MJ, Hayward GS (2001) Proteasome-independent disruption of PML oncogenic domains (PODs), but not covalent modification by SUMO-1, is required for human cytomegalovirus immediate-early protein IE1 to inhibit PML-mediated transcriptional repression. J Virol 75(22):10683–10695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue Y, Toh SY, He P, Lim T, Lim D, Pang CL, Abastado JP, Thierry F (2015) HPV16-E2 induces prophase arrest and activates the cellular DNA damage response in vitro and in precursor lesions of cervical carcinoma. Oncotarget 6(33):34979–34991. doi:10.18632/oncotarget.5512

    PubMed  PubMed Central  Google Scholar 

  • Yamauchi Y, Daikoku T, Goshima F, Nishiyama Y (2003) Herpes simplex virus UL14 protein blocks apoptosis. Microbiol Immunol 47(9):685–689

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Deng W, Hau PM, Liu J, Lau VM, Cheung AL, Huen MS, Tsao SW (2015) Epstein-Barr virus BZLF1 protein impairs accumulation of host DNA damage proteins at damage sites in response to DNA damage. Lab Invest 95(8):937–950. doi:10.1038/labinvest.2015.69

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Madden-Fuentes RJ, Lou BX, Pipas JM, Gerhardt J, Rigell CJ, Fanning E (2008) Ataxia telangiectasia-mutated damage-signaling kinase- and proteasome-dependent destruction of Mre11-Rad50-Nbs1 subunits in Simian virus 40-infected primate cells. J Virol 82(11):5316–5328. doi:10.1128/JVI.02677-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the Frappier laboratory is supported by grants from the Canadian Institutes of Health Research (CIHR) and the Canadian Cancer Society. L.F. is a tier 1 Canada Research Chair in Molecular Virology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori Frappier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Frappier, L. (2016). Manipulation of PML Nuclear Bodies and DNA Damage Responses by DNA Viruses. In: Bazett-Jones, D., Dellaire, G. (eds) The Functional Nucleus. Springer, Cham. https://doi.org/10.1007/978-3-319-38882-3_13

Download citation

Publish with us

Policies and ethics