Skip to main content

Human Diseases Related to Nuclear Envelope Proteins

  • Chapter
  • First Online:
The Functional Nucleus

Abstract

The nuclear envelope has traditionally been looked at as a barrier separating the nucleus and cytoplasm and a complex organelle that disassembles and precisely reassembles during mitosis. However, the combination of cell biological discoveries localizing proteins to the nuclear envelope and human genetic investigations identifying disease-causing genes has show that the nuclear envelope must have tissue-selective functions beyond those general ones. Mutations in genes encoding proteins of the nuclear lamina, nuclear membranes, nuclear pore complexes and perinuclear space have been linked to a wide range of human diseases, sometimes called laminopathies or nuclear envelopathies, that often affect specific tissues and organ system. Genetic manipulations in model organisms and experiments on cultured cells have begun to decipher how mutations in genes encoding broadly expressed nuclear envelope proteins cause diseases. This research has even identified potential treatments for these rare diseases that impact on human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal AK, Fry’s JP, Auchus R et al (2003) Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum Mol Genet 12:1995–2001

    Article  CAS  PubMed  Google Scholar 

  • Allgrove J, Clayden GS, Grant DB et al (1978) Familial glucocorticoid deficiency with achalasia of the cardia and deficient tear production. Lancet 1:1284–1286

    Article  CAS  PubMed  Google Scholar 

  • Astejada MN, Goto K, Nagano A et al (2007) Emerinopathy and laminopathy clinical, pathological and molecular features of muscular dystrophy with nuclear envelopathy in Japan. Acta Myol 26:159–164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Attali R, Warwar N, Israel A et al (2009) Mutation of SYNE-1, encoding an essential component of the nuclear lamina, is responsible for autosomal recessive arthrogryposis. Hum Mol Genet 18:3462–3469

    Article  CAS  PubMed  Google Scholar 

  • Barrowman J, Wiley PA, Hudon-Miller SE et al (2012) Human ZMPSTE24 disease mutations: residual proteolytic activity correlates with disease severity. Hum Mol Genet 21:4084–4093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basel-Vanagaite L, Muncher L, Straussberg R et al (2006) Mutated nup62 causes autosomal recessive infantile bilateral striatal necrosis. Ann Neurol 60:214–222

    Article  CAS  PubMed  Google Scholar 

  • Bengtsson L, Otto H (2008) LUMA interacts with emerin and influences its distribution at the inner nuclear membrane. J Cell Sci 121:536–548

    Article  CAS  PubMed  Google Scholar 

  • Ben Yaou R, Navarro C, Quijano-Roy S et al (2011) Type B mandibuloacral dysplasia with congenital myopathy due to homozygous ZMPSTE24 missense mutation. Eur J Hum Genet 19:647–654

    Article  CAS  PubMed  Google Scholar 

  • Bergo MO, Gavino B, Ross J et al (2002) Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proc Natl Acad Sci U S A 99:13049–13054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berk JM, Tifft KE, Wilson KL (2013) The nuclear envelope LEM-domain protein emerin. Nucleus 4:298–314

    Article  PubMed  PubMed Central  Google Scholar 

  • Bione S, Maestrini E, Rivella S et al (1994) Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet 8:323–327

    Article  CAS  PubMed  Google Scholar 

  • Boguslavsky RL, Stewart CL, Worman HJ (2006) Nuclear lamin A inhibits adipocyte differentiation: implications for Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 15:653–663

    Article  CAS  PubMed  Google Scholar 

  • Bonne G, Di Barletta MR, Varnous S et al (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 21:285–288

    Article  CAS  PubMed  Google Scholar 

  • Borovik L, Modaff P, Waterham HR et al (2013) Pelger-huet anomaly and a mild skeletal phenotype secondary to mutations in LBR. Am J Med Genet A 161A:2066–2073

    Article  PubMed  CAS  Google Scholar 

  • Bourgeois B, Gilquin B, Tellier-Lebègue C et al (2013) Inhibition of TGF-β signaling at the nuclear envelope: characterization of interactions between MAN1, Smad2 and Smad3, and PPM1A. Sci Signal 6:ra49

    Google Scholar 

  • Brodsky GL, Muntoni F, Miocic S et al (2000) Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation 101:473–476

    Article  CAS  PubMed  Google Scholar 

  • Brown RS, Zhao C, Chase AR et al (2014) The mechanism of Torsin ATPase activation. Proc Natl Acad Sci U S A 111:E4822–E4831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao H, Hegele RA (2000) Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 9:109–112

    Article  CAS  PubMed  Google Scholar 

  • Cao K, Graziotto JJ, Blair CD et al (2011) Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci Transl Med 3:89ra58

    Google Scholar 

  • Capell BC, Erdos MR, Madigan JP et al (2005) Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 102:12879–12884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capell BC, Olive M, Erdos MR et al (2008) A farnesyltransferase inhibitor prevents both the onset and late progression of cardiovascular disease in a progeria mouse model. Proc Natl Acad Sci U S A 105:15902–15907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caux F, Dubosclard E, Lascols O et al (2003) A new clinical condition linked to a novel mutation in lamins A and C with generalized lipoatrophy, insulin-resistant diabetes, disseminated leukomelanodermic papules, liver steatosis, and cardiomyopathy. J Clin Endocrinol Metab 88:1006–1013

    Article  CAS  PubMed  Google Scholar 

  • Chang W, Antoku S, Östlund C et al (2015a) Linker of nucleoskeleton and cytoskeleton (LINC) complex-mediated actin-dependent nuclear positioning orients centrosomes in migrating myoblasts. Nucleus 6:77–88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang W, Worman HJ, Gundersen GG (2015b) Accessorizing and anchoring the LINC complex for multifunctionality. J Cell Biol 208:11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Lee L, Kudlow BA et al (2003) LMNA mutations in atypical Werner’s syndrome. Lancet 362:440–445

    Article  CAS  PubMed  Google Scholar 

  • Choi JC, Muchir A, Wu W et al (2012) Temsirolimus activates autophagy and ameliorates cardiomyopathy caused by lamin A/C gene mutation. Sci Transl Med 4:144ra102

    Google Scholar 

  • Clayton P, Fischer B, Mann A et al (2010) Mutations causing Greenberg dysplasia but not Pelger anomaly uncouple enzymatic from structural functions of a nuclear membrane protein. Nucleus 1:354–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Coffinier C, Chang SY, Nobumori C et al (2010) Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency. Proc Natl Acad Sci U S A 107:5076–5081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coffinier C, Jung HJ, Nobumori C et al (2011) Deficiencies in lamin B1 and lamin B2 cause neurodevelopmental defects and distinct nuclear shape abnormalities in neurons. Mol Biol Cell 22:4683–4693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cronshaw JM, Krutchinsky AN, Zhang W et al (2002) Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158:915–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cronshaw JM, Matunis MJ (2003) The nuclear pore complex protein ALADIN is mislocalized in triple A syndrome. Proc Natl Acad Sci U S A 100:5823–5827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csoka AB, Cao H, Sammak PJ et al (2004) Novel lamin A/C gene (LMNA) mutations in atypical progeroid syndromes. J Med Genet 41:304–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutler DA, Sullivan T, Marcus-Samuels B et al (2002) Characterization of adiposity and metabolism in Lmna-deficient mice. Biochem Biophys Res Commun 291:522–527

    Article  CAS  PubMed  Google Scholar 

  • Dauer WT, Worman HJ (2009) The nuclear envelope as a signaling node in development and disease. Dev Cell 17:626–638

    Article  CAS  PubMed  Google Scholar 

  • DeBusk FL (1972) The Hutchinson-Gilford progeria syndrome. Report of 4 cases and review of the literature. J Pediatr 80:697–724

    Article  CAS  PubMed  Google Scholar 

  • Decaudain A, Vantyghem MC, Guerci B et al (2007) New metabolic phenotypes in laminopathies: LMNA mutations in patients with severe metabolic syndrome. J Clin Endocrinol Metab 92:4835–4844

    Article  CAS  PubMed  Google Scholar 

  • Dechat T, Korbei B, Vaughan OA et al (2000) Lamina-associated polypeptide 2alpha binds intranuclear A-type lamins. J Cell Sci 113:3473–3484

    CAS  PubMed  Google Scholar 

  • De Sandre-Giovannoli A, Chaouch M, Kozlov S et al (2002) Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. Am J Hum Genet 70:726–736

    Article  PubMed  PubMed Central  Google Scholar 

  • De Sandre-Giovannoli A, Bernard R, Cau P et al (2003) Lamin A truncation in Hutchinson-Gilford progeria. Science 300:2055

    Article  PubMed  Google Scholar 

  • Dhe-Paganon S, Werner ED, Chi YI et al (2002) Structure of the globular tail of nuclear lamin. J Biol Chem 277:17381–17384

    Article  CAS  PubMed  Google Scholar 

  • Dorboz I, Coutelier M, Bertrand AT et al (2014) Severe dystonia, cerebellar atrophy, and cardiomyopathy likely caused by a missense mutation in TOR1AIP1. Orphanet J Rare Dis 9:174

    Article  PubMed  PubMed Central  Google Scholar 

  • Dupré N, Gros-Louis F, Chrestian N (2007) Clinical and genetic study of autosomal recessive cerebellar ataxia type 1. Ann Neurol 62:93–98

    Article  PubMed  CAS  Google Scholar 

  • Emery AE (1989) Emery-Dreifuss syndrome. J Med Genet 26:637–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson M, Brown WT, Gordon LB et al (2003) Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423:293–298

    Article  CAS  PubMed  Google Scholar 

  • Espada J, Varela I, Flores I et al (2008) Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. J Cell Biol 181:27–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatkin D, MacRae C, Sasaki T et al (1999) Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med 341:1715–1724

    Article  CAS  PubMed  Google Scholar 

  • Foisner R, Gerace L (1993) Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell 73:1267–1279

    Article  CAS  PubMed  Google Scholar 

  • Folker ES, Östlund C, Luxton GW et al (2011) Lamin A variants that cause striated muscle disease are defective in anchoring transmembrane actin-associated nuclear lines for nuclear movement. Proc Natl Acad Sci U S A 108:131–136

    Article  CAS  PubMed  Google Scholar 

  • Fong LG, Frost D, Meta M et al (2006) A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science 311:1621–1623

    Article  CAS  PubMed  Google Scholar 

  • Fong LG, Ng JK, Meta M et al (2004) Heterozygosity for Lmna deficiency eliminates the progeria-like phenotypes in Zmpste24-deficient mice. Proc Natl Acad Sci U S A 101:18111–18116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabriel D, Roedl D, Gordon LB et al (2015) Sulforaphane enhances progerin clearance in Hutchinson-Gilford progeria fibroblasts. Aging Cell 14:78–91

    Article  CAS  PubMed  Google Scholar 

  • Glynn MW, Glover TW (2005) Incomplete processing of mutant lamin A in Hutchinson-Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition. Hum Mol Genet 14:2959–2969

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Alegre P, Paulson HL (2004) Aberrant cellular behavior of mutant torsinA implicates nuclear envelope dysfunction in DYT1 dystonia. J Neurosci 24:2593–2601

    Article  CAS  PubMed  Google Scholar 

  • Goodchild RE, Dauer WT (2004) Mislocalization to the nuclear envelope: an effect of the dystonia-causing torsinA mutation. Proc Natl Acad Sci U S A 101:847–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodchild RE, Dauer WT (2005) The AAA+ protein torsinA interacts with a conserved domain present in LAP1 and a novel ER protein. J Cell Biol 168:855–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodchild RE, Kim CE, Dauer WT (2005) Loss of the dystonia-associated protein torsinA selectively disrupts the neuronal nuclear envelope. Neuron 48:923–932

    Article  CAS  PubMed  Google Scholar 

  • Goldman RD, Shumaker DK, Erdos MR et al (2004) Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 101:8963–8968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon LB, Harten IA, Patti ME et al (2005) Reduced adiponectin and HDL cholesterol without elevated C-reactive protein: clues to the biology of premature atherosclerosis in Hutchinson-Gilford Progeria Syndrome. J Pediatr 146:336–341

    Article  CAS  PubMed  Google Scholar 

  • Gordon LB, Kleinman ME, Miller DT et al (2012) Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 109:16666–16671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gros-Louis F, Dupré N, Dion P et al (2007) Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat Genet 39:80–85

    Article  CAS  PubMed  Google Scholar 

  • Guilluy C, Osborne LD, Van Landeghem L et al (2014) Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat Cell Biol 16:376–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gundersen GG, Worman HJ (2013) Nuclear positioning. Cell 152:1376–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellemans J, Preobrazhenska O, Willaert A et al (2004) Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis. Nat Genet 36:1213–1218

    Article  CAS  PubMed  Google Scholar 

  • Heng MY, Lin ST, Verret L et al (2013) Lamin B1 mediates cell-autonomous neuropathology in a leukodystrophy mouse model. J Clin Invest 123:2719–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez L, Roux KJ, Wong ES et al (2010) Functional coupling between the extracellular matrix and nuclear lamina by Wnt signaling in progeria. Dev Cell 19:413–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho CY, Jaalouk DE, Vartiainen MK et al (2013) Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. Nature 497:507–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann K, Dreger CK, Olins AL et al (2002) Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger-Huët anomaly). Nat Genet 31:410–414

    CAS  PubMed  Google Scholar 

  • Holmer L, Pezhman A, Worman HJ (1998) The human lamin B receptor/sterol reductase multigene family. Genomics 54:469–476

    Article  CAS  PubMed  Google Scholar 

  • Horn HF, Brownstein Z, Lenz DR et al (2013) The LINC complex is essential for hearing. J Clin Invest 123:740–750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kayman-Kurekci G, Talim B, Korkusuz P et al (2014) Mutation in TOR1AIP1 encoding LAP1B in a form of muscular dystrophy: a novel gene related to nuclear envelopathies. Neuromuscul Disord 24:624–633

    Article  PubMed  Google Scholar 

  • Kim CE, Perez A, Perkins G et al (2010) A molecular mechanism underlying the neural-specific defect in torsinA mutant mice. Proc Natl Acad Sci U S A 107:9861–9866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korfali N, Wilkie GS, Swanson SK et al (2012) The nuclear envelope proteome differs notably between tissues. Nucleus 3:552–564

    Article  PubMed  PubMed Central  Google Scholar 

  • Krimm I, Östlund C, Gilquin B et al (2002) The Ig-like structure of the C-terminal domain of lamin A/C, mutated in muscular dystrophies, cardiomyopathy, and partial lipodystrophy. Structure 10:811–823

    Article  CAS  PubMed  Google Scholar 

  • Lammerding J, Schulze PC, Takahashi T et al (2004) Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest 113:370–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Roberti R, Blobel G (2015) Structure of an integral membrane sterol reductase from Methylomicrobium alcaliphilum. Nature 517:104–107

    Article  CAS  PubMed  Google Scholar 

  • Liang WC, Mitsuhashi H, Keduka E et al (2011) TMEM43 mutations in Emery-Dreifuss muscular dystrophy-related myopathy. Ann Neurol 69:1005–1013

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Blake DL, Callebaut I et al (2000) MAN1, an inner nuclear membrane protein that shares the LEM domain with lamina-associated polypeptide 2 and emerin. J Biol Chem 275:4840–4847

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Morrison JM, Wu W et al (2005) MAN1, an integral protein of the inner nuclear membrane, binds Smad2 and Smad3 and antagonizes transforming growth factor-beta signaling. Hum Mol Genet 14:437–445

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Worman HJ (1993) Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. Biol Chem 268:16321–16326

    CAS  Google Scholar 

  • Lin ST, Zhang L, Lin X et al (2014) Nuclear envelope protein MAN1 regulates clock through BMAL1. Elife 3, e02981

    PubMed  PubMed Central  Google Scholar 

  • Liu B, Ghosh S, Yang X et al (2012) Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria. Cell Metab 16:738–750

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Wang J, Chan KM et al (2005) Genomic instability in laminopathy-based premature aging. Nat Med 11:780–785

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Rusinol A, Sinensky M et al (2006) DNA damage responses in progeroid syndromes arise from defective maturation of prelamin A. J Cell Sci 119:4644–4649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardi ML, Jaalouk DE, Shanahan CM et al (2011) The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J Biol Chem 286:26743–26753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu JT, Muchir A, Nagy PL et al (2011) LMNA cardiomyopathy: cell biology and genetics meet clinical medicine. Dis Model Mech 4:562–568

    Article  PubMed  PubMed Central  Google Scholar 

  • Mallampalli MP, Huyer G, Bendale P et al (2005) Inhibiting farnesylation reverses the nuclear morphology defect in a HeLa cell model for Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 102:14416–11421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manilal S, Nguyen TM, Sewry CA et al (1996) The Emery-Dreifuss muscular dystrophy protein, emerin, is a nuclear membrane protein. Hum Mol Genet 5:801–808

    Article  CAS  PubMed  Google Scholar 

  • Meinke P, Mattioli E, Haque F et al (2014) Muscular dystrophy-associated SUN1 and SUN2 variants disrupt nuclear-cytoskeletal connections and myonuclear organization. PLoS Genet 10, e1004605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Merideth MA, Gordon LB, Clauss S et al (2008) Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med 358:592–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mory PB, Crispim F, Freire MB et al (2012) Phenotypic diversity in patients with lipodystrophy associated with LMNA mutations. Eur J Endocrinol 167:423–431

    Article  CAS  PubMed  Google Scholar 

  • Moulson CL, Go G, Gardner JM et al (2005) Homozygous and compound heterozygous mutations in ZMPSTE24 cause the laminopathy restrictive dermopathy. J Invest Dermatol 125:913–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muchir A, Bonne G, van der Kooi AJ et al (2000) Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum Mol Genet 9:1453–1459

    Article  CAS  PubMed  Google Scholar 

  • Muchir A, Pavlidis P, Decostre V et al (2007) Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy. J Clin Invest 117:1282–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muchir A, Kim YJ, Reilly SA et al (2013) Inhibition of extracellular signal-regulated kinase 1/2 signaling has beneficial effects on skeletal muscle in a mouse model of Emery-Dreifuss muscular dystrophy caused by lamin A/C gene mutation. Skelet Muscle 3:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muchir A, Wu W, Choi JC et al (2012) Abnormal p38α mitogen-activated protein kinase signaling in dilated cardiomyopathy caused by lamin A/C gene mutation. Hum Mol Genet 21:4325–4333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muchir A, Wu W, Worman HJ (2009) Reduced expression of A-type lamins and emerin activates extracellular signal-regulated kinase in cultured cells. Biochim Biophys Acta 1792:75–81

    Article  CAS  PubMed  Google Scholar 

  • Nagano A, Koga R, Ogawa M et al (1996) Emerin deficiency at the nuclear membrane in patients with Emery-Dreifuss muscular dystrophy. Nat Genet 12:254–259

    Article  CAS  PubMed  Google Scholar 

  • Naismith TV, Heuser JE, Breakefield XO et al (2004) TorsinA in the nuclear envelope. Proc Natl Acad Sci U S A 101:7612–7617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro CL, Cadiñanos J, De Sandre-Giovannoli A et al (2005) Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin A precursors. Hum Mol Genet 14:1503–1513

    Article  CAS  PubMed  Google Scholar 

  • Neilson DE, Adams MD, Orr CM et al (2009) Infection-triggered familial or recurrent cases of acute necrotizing encephalopathy caused by mutations in a component of the nuclear pore, RANBP2. Am J Hum Genet 84:44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novelli G, Muchir A, Sangiuolo F et al (2002) Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. Am J Hum Genet 71:426–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olive M, Harten I, Mitchell R et al (2010) Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging. Arterioscler Thromb Vasc Biol 30:2301–2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozelius LJ, Hewett JW, Page CE et al (1997) The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet 17:40–48

    Article  CAS  PubMed  Google Scholar 

  • Padiath QS, Saigoh K, Schiffmann R et al (2006) Lamin B1 duplications cause autosomal dominant leukodystrophy. Nat Genet 38:1114–1123

    Article  CAS  PubMed  Google Scholar 

  • Pan D, Estévez-Salmerón LD, Stroschein SL et al (2005) The integral inner nuclear membrane protein MAN1 physically interacts with the R-Smad proteins to repress signaling by the transforming growth factor-β superfamily of cytokines. J Biol Chem 280:15992–16001

    Article  CAS  PubMed  Google Scholar 

  • Pendás AM, Zhou Z, Cadiñanos J et al (2002) Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat Genet 31:94–99

    PubMed  Google Scholar 

  • Puckelwartz MJ, Kessler EJ, Kim G et al (2010) Nesprin-1 mutations in human and murine cardiomyopathy. Mol Cell Cardiol 48:600–608

    Article  CAS  Google Scholar 

  • Raju GP, Dimova N, Klein PS et al (2003) SANE, a novel LEM domain protein, regulates bone morphogenetic protein signaling through interaction with Smad1. J Biol Chem 278:428–437

    Article  CAS  PubMed  Google Scholar 

  • Ramos FJ, Chen SC, Garelick MG et al (2012) Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci Transl Med 4:144ra103

    Google Scholar 

  • Roux KJ, Crisp ML, Liu Q et al (2009) Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization. Proc Natl Acad Sci U S A 106:2194–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scaffidi P, Misteli T (2008) Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 10:452–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senior A, Gerace L (1988) Integral membrane proteins specific to the inner nuclear membrane and associated with the nuclear lamina. J Cell Biol 107:2029–2036

    Article  CAS  PubMed  Google Scholar 

  • Shackleton S, Lloyd DJ, Jackson SN et al (2000) LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat Genet 24:153–156

    Article  CAS  PubMed  Google Scholar 

  • Sinensky M, Fantle K, Trujillo M et al (1994) The processing pathway of prelamin A. J Cell Sci 107:61–67

    CAS  PubMed  Google Scholar 

  • Shin JY, Le Dour C, Sera F et al (2014) Depletion of lamina-associated polypeptide 1 from cardiomyocytes causes cardiac dysfunction in mice. Nucleus 5:260–459

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin JY, Méndez-López I, Wang Y et al (2013) Lamina-associated polypeptide-1 interacts with the muscular dystrophy protein emerin and is essential for skeletal muscle maintenance. Dev Cell 26:591–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RR, Sedani S, Lim M et al (2015) RANBP2 mutation and acute necrotizing encephalopathy: 2 cases and a literature review of the expanding clinico-radiological phenotype. Eur J Paediatr Neurol 19:106–113

    Article  PubMed  Google Scholar 

  • Sosa BA, Demircioglu FE, Chen JZ et al (2014) How lamina-associated polypeptide 1 (LAP1) activates Torsin. Elife 3, e03239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Speckman RA, Garg A, Du F et al (2000) Mutational and haplotype analyses of families with familial partial lipodystrophy (Dunnigan variety) reveal recurrent missense mutations in the globular C-terminal domain of lamin A/C. Am J Hum Genet 66:1192–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stehbens WE, Wakefield SJ, Gilbert-Barness E et al (1999) Histological and ultrastructural features of atherosclerosis in progeria. Cardiovasc Pathol 8:29–39

    Article  CAS  PubMed  Google Scholar 

  • Sullivan T, Escalante-Alcalde D, Bhatt H et al (1999) Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 147:913–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor MR, Slavov D, Gajewski A et al (2005) Thymopoietin (lamina-associated polypeptide 2) gene mutation associated with dilated cardiomyopathy. Hum Mutat 26:566–574

    Article  CAS  PubMed  Google Scholar 

  • Tazir M, Azzedine H, Assami S et al (2004) Phenotypic variability in autosomal recessive axonal Charcot-Marie-Tooth disease due to the R298C mutation in lamin A/C. Brain 127:154–163

    Article  CAS  PubMed  Google Scholar 

  • Toth JI, Yang SH, Qiao X et al (2005) Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes. Proc Natl Acad Sci U S A 102:12873–12878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tullio-Pelet A, Salomon R, Hadj-Rabia S et al (2000) Mutant WD-repeat protein in triple-A syndrome. Nat Genet 26:332–335

    Article  CAS  PubMed  Google Scholar 

  • Verstraeten VL, Ji JY, Cummings KS et al (2008) Increased mechanosensitivity and nuclear stiffness in Hutchinson-Gilford progeria cells: effects of farnesyltransferase inhibitors. Aging Cell 7:383–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterham HR, Koster J, Mooyer P et al (2003) Autosomal recessive HEM/Greenberg skeletal dysplasia is caused by 3 beta-hydroxysterol delta 14-reductase deficiency due to mutations in the lamin B receptor gene. Am J Hum Genet 72:1013–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wojtanik KM, Edgemon K, Viswanadha S et al (2009) The role of LMNA in adipose: a novel mouse model of lipodystrophy based on the Dunnigan-type familial partial lipodystrophy mutation. J Lipid Res 50:1068–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worman HJ, Evans CD, Blobel G (1990) The lamin B receptor of the nuclear envelope inner membrane: a polytopic protein with eight potential transmembrane domains. J Cell Biol 111:1535–1542

    Article  CAS  PubMed  Google Scholar 

  • Worman HJ, Fong LG, Muchir A et al (2009) Laminopathies and the long strange trip from basic cell biology to therapy. J Clin Invest 119:1825–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worman HJ, Yuan J, Blobel G et al (1988) A lamin B receptor in the nuclear envelope. Proc Natl Acad Sci U S A 85:8531–8534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W, Muchir A, Shan J et al (2011) Mitogen-activated protein kinase inhibitors improve heart function and prevent fibrosis in cardiomyopathy caused by mutation in lamin A/C gene. Circulation 123:53–61

    Article  CAS  PubMed  Google Scholar 

  • Yang SH, Andres DA, Spielmann HP et al (2008) Progerin elicits disease phenotypes of progeria in mice whether or not it is farnesylated. J Clin Invest 118:3291–3300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SH, Bergo MO, Toth JI et al (2005) Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson-Gilford progeria syndrome mutation. Proc Natl Acad Sci U S A 102:10291–10296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SH, Chang SY, Ren S et al (2011) Absence of progeria-like disease phenotypes in knock-in mice expressing a non-farnesylated version of progerin. Hum Mol Genet 20:436–444

    Article  CAS  PubMed  Google Scholar 

  • Yang SH, Meta M, Qiao X et al (2006) A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J Clin Invest 116:2115–2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye Q, Worman HJ (1996) Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1. J Biol Chem 271:14653–14656

    Article  CAS  PubMed  Google Scholar 

  • Young SG, Yang SH, Davies BS et al (2013) Targeting protein prenylation in progeria. Sci Transl Med 5:171ps3

    Google Scholar 

  • Zhang Q, Bethmann C, Worth NF (2007) Nesprin-1 and -2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum Mol Genet 16:2816–2833

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Chen S, Yoo S et al (2008) Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell 135:1017–1027

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yang H, Corydon MJ et al (1999) Localization of a human nucleoporin 155 gene (NUP155) to the 5p13 region and cloning of its cDNA. Genomics 57:144–151

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is currently supported by grants from the United States National Institutes of Health (AR048997, NS059352, HD070713), the Muscular Dystrophy Association (MDA 294537) and Los Angeles Thoracic and Cardiovascular Foundation (CRV 2011-873R1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard J. Worman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Worman, H.J. (2016). Human Diseases Related to Nuclear Envelope Proteins. In: Bazett-Jones, D., Dellaire, G. (eds) The Functional Nucleus. Springer, Cham. https://doi.org/10.1007/978-3-319-38882-3_1

Download citation

Publish with us

Policies and ethics