Skip to main content

Hair Follicle Stem Cells and Hair Regeneration

  • Living reference work entry
  • First Online:
Cell Engineering and Regeneration

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

  • 208 Accesses

Abstract

The hair follicle (HF), forming embryonically through cutaneous epithelial-mesenchymal interaction, is a sophisticated multifunctional organ. In addition to its protective, thermoregulatory, mechanosensory, and piloerectile functions, it is also essential for social communication. HFs repeatedly cycle through resting (telogen), growing (anagen), and regressing (catagen) phases in life. Prolonged arrest in telogen or disruption of anagen can result in unwanted hair loss or alopecia. Hair regeneration from telogen is fueled by hair follicle stem cells (HFSCs) located in the secondary hair germ and the bulge epithelium. HFSCs are subject to non-cell-autonomous regulation by their niche. HFSC niche cells can be categorized into modules of signaling, sensing, and message-relaying functions that enable HFSCs to adapt their regenerative activities according to varying physiological needs and environmental changes. Niche dysfunction can lead to alopecia. For example, androgenetic alopecia, i.e., male pattern hair loss, is caused by dysfunctional HF dermal papilla cells, while alopecia areata, i.e., spot baldness, results from infiltration of autoreactive T cells into HFs. In addition to telogen-to-anagen regeneration, anagen HFs can adopt another regenerative scheme of anagen HF repair (AHFR) when damaged. Basal HF epithelial cells outside the HFSC compartments reserve a concealed progenitor property with plastic cell fate choices. By mobilizing these nonconventional basal progenitor cells, AHFR restores lost structures to resume the disrupted anagen and avoids premature catagen entry, as seen in the dystrophic anagen pathway following chemotherapeutic and radiotherapeutic injuries. Targeting disease-specific niche pathology and enhancing the intrinsic regenerative programs of AHFR can therefore help to develop new strategies for the treatment of hair loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AHFR:

Anagen hair follicle repair

HF:

Hair follicle

HFSC:

Hair follicle stem cell

IRS:

Inner root sheath

ORS:

Outer root sheath

SC:

Stem cell

References

  • Abaci HE et al (2018) Tissue engineering of human hair follicles using a biomimetic developmental approach. Nat Commun 9(1):5301

    Article  Google Scholar 

  • Ackerman AB, De Viragh PA, Chongchitnant N (1993) Anatomic, histologic and biologic aspects of hair follicles and hairs. In: Neoplasms with follicular differentiation. Lea & Febiger, Philadelphia/London, pp 35–102

    Google Scholar 

  • Ali N et al (2017) Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 169(6):1119–1129. e11

    Article  Google Scholar 

  • Alkhalifah A et al (2010) Alopecia areata update: part II. Treatment. J Am Acad Dermatol 62(2):191–202. quiz 203-4

    Article  Google Scholar 

  • Al-Nuaimi Y et al (2014) A meeting of two chronobiological systems: circadian proteins Period1 and BMAL1 modulate the human hair cycle clock. J Invest Dermatol 134(3):610–619

    Article  Google Scholar 

  • Ando Y et al (1999) Expression of mRNA for androgen receptor, 5 alpha-reductase and 17 beta-hydroxysteroid dehydrogenase in human dermal papilla cells. Br J Dermatol 141(5):840–845

    Article  Google Scholar 

  • Azziz R (2003) The evaluation and management of hirsutism. Obstet Gynecol 101(5 Pt 1):995–1007

    Google Scholar 

  • Bahta AW et al (2008) Premature senescence of balding dermal papilla cells in vitro is associated with p16(INK4a) expression. J Invest Dermatol 128(5):1088–1094

    Article  Google Scholar 

  • Bai X et al (2015) Roles of GasderminA3 in Catagen-Telogen transition during hair cycling. J Invest Dermatol 135(9):2162–2172

    Article  Google Scholar 

  • Betz RC et al (2015) Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci. Nat Commun 6:5966

    Article  Google Scholar 

  • Blanpain C et al (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118(5):635–648

    Article  Google Scholar 

  • Botchkarev VA et al (1997) Hair cycle-dependent plasticity of skin and hair follicle innervation in normal murine skin. J Comp Neurol 386(3):379–395

    Article  Google Scholar 

  • Botchkarev VA et al (1999) Hair cycle-dependent changes in adrenergic skin innervation, and hair growth modulation by adrenergic drugs. J Invest Dermatol 113(6):878–887

    Article  Google Scholar 

  • Botchkarev VA et al (2001) p53 involvement in the control of murine hair follicle regression. Am J Pathol 158(6):1913–1919

    Article  Google Scholar 

  • Bramson HN et al (1997) Unique preclinical characteristics of GG745, a potent dual inhibitor of 5AR. J Pharmacol Exp Ther 282(3):1496–1502

    Google Scholar 

  • Brownell I et al (2011) Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell 8(5):552–565

    Article  Google Scholar 

  • Castellana D, Paus R, Perez-Moreno M (2014) Macrophages contribute to the cyclic activation of adult hair follicle stem cells. PLoS Biol 12(12):e1002002

    Article  Google Scholar 

  • Cattaneo SM, Quastler H, Sherman FG (1961) Proliferative cycle in the growing hair follicle of the mouse. Nature 190:923–924

    Article  Google Scholar 

  • Chase HB (1954) Growth of the hair. Physiol Rev 34(1):113–126

    Article  Google Scholar 

  • Chase HB, Rauch R, Smith VW (1951) Critical stages of hair development and pigmentation in the mouse. Physiol Zool 24(1):1–8

    Article  Google Scholar 

  • Chase HB, Montagna W, Malone JD (1953) Changes in the skin in relation to the hair growth cycle. Anat Rec 116(1):75–81

    Article  Google Scholar 

  • Chen CC et al (2014) Regenerative hair waves in aging mice and extra-follicular modulators follistatin, dkk1, and sfrp4. J Invest Dermatol 134(8):2086–2096

    Article  Google Scholar 

  • Chen CC et al (2015) Organ-level quorum sensing directs regeneration in hair stem cell populations. Cell 161(2):277–290

    Article  Google Scholar 

  • Chen CC et al (2016) The Modulatable stem cell niche: tissue interactions during hair and feather follicle regeneration. J Mol Biol 428(7):1423–1440

    Article  Google Scholar 

  • Chen CL et al (2020.. (in press)) Functional complexity of hair follicle stem cell niche and therapeutic targeting of niche dysfunction for hair regeneration. J Biomed Sci 27:43

    Article  Google Scholar 

  • Cheng CC et al (2018) Hair follicle epidermal stem cells define a niche for tactile sensation. Elife 7

    Google Scholar 

  • Chi W, Wu E, Morgan BA (2013) Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development 140(8):1676–1683

    Article  Google Scholar 

  • Choi YS et al (2013) Distinct functions for Wnt/beta-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis. Cell Stem Cell 13(6):720–733

    Article  Google Scholar 

  • Choudhry R et al (1992) Localization of androgen receptors in human skin by immunohistochemistry: implications for the hormonal regulation of hair growth, sebaceous glands and sweat glands. J Endocrinol 133(3):467–475

    Article  Google Scholar 

  • Chu S-Y et al (2019) Mechanical stretch induces hair regeneration through the alternative activation of macrophages. Nat Commun 10(1):1524

    Article  Google Scholar 

  • Chueh SC et al (2013) Therapeutic strategy for hair regeneration: hair cycle activation, niche environment modulation, wound-induced follicle neogenesis, and stem cell engineering. Expert Opin Biol Ther 13(3):377–391

    Article  Google Scholar 

  • Collins HH (1918) Studies of normal moult and of artificially induced regeneration of pelage in Peromyscus. J Exp Zool 27:27

    Article  Google Scholar 

  • Cotellessa C et al (2001) The use of topical diphenylcyclopropenone for the treatment of extensive alopecia areata. J Am Acad Dermatol 44(1):73–76

    Article  Google Scholar 

  • Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61(7):1329–1337

    Article  Google Scholar 

  • Courtois M et al (1995) Ageing and hair cycles. Br J Dermatol 132(1):86–93

    Article  Google Scholar 

  • De Villez RL (1985) Topical minoxidil therapy in hereditary androgenetic alopecia. Arch Dermatol 121(2):197–202

    Article  Google Scholar 

  • Dhouailly D (1973) Dermo-epidermal interactions between birds and mammals: differentiation of cutaneous appendages. J Embryol Exp Morphol 30(3):587–603

    Google Scholar 

  • Donati G et al (2014) Epidermal Wnt/beta-catenin signaling regulates adipocyte differentiation via secretion of adipogenic factors. Proc Natl Acad Sci USA 111(15):E1501–E1509

    Article  Google Scholar 

  • Driskell RR et al (2009) Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development 136(16):2815–2823

    Article  Google Scholar 

  • Dry FW (1926) The coat of the mouse (Mus musculus). J Genet 16(3):54

    Article  Google Scholar 

  • Elliott K, Stephenson TJ, Messenger AG (1999) Differences in hair follicle dermal papilla volume are due to extracellular matrix volume and cell number: implications for the control of hair follicle size and androgen responses. J Invest Dermatol 113(6):873–877

    Article  Google Scholar 

  • Enshell-Seijffers D et al (2010) Beta-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Dev Cell 18(4):633–642

    Article  Google Scholar 

  • Fan SM et al (2018a) External light activates hair follicle stem cells through eyes via an ipRGC-SCN-sympathetic neural pathway. Proc Natl Acad Sci USA 115(29):E6880–E6889

    Article  Google Scholar 

  • Fan SM et al (2018b) Inducing hair follicle neogenesis with secreted proteins enriched in embryonic skin. Biomaterials 167:121–131

    Article  Google Scholar 

  • Festa E et al (2011) Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 146(5):761–771

    Article  Google Scholar 

  • Foitzik K et al (2000) Control of murine hair follicle regression (catagen) by TGF-beta1 in vivo. FASEB J 14(5):752–760

    Article  Google Scholar 

  • Fujiwara H et al (2011) The basement membrane of hair follicle stem cells is a muscle cell niche. Cell 144(4):577–589

    Article  Google Scholar 

  • Furlan A et al (2016) Visceral motor neuron diversity delineates a cellular basis for nipple- and pilo-erection muscle control. Nat Neurosci 19(10):1331–1340

    Article  Google Scholar 

  • Fushimi T et al (2011) Narrow-band red LED light promotes mouse hair growth through paracrine growth factors from dermal papilla. J Dermatol Sci 64(3):246–248

    Article  Google Scholar 

  • Gilhar A, Paus R, Kalish RS (2007) Lymphocytes, neuropeptides, and genes involved in alopecia areata. J Clin Invest 117(8):2019–2027

    Article  Google Scholar 

  • Greco V et al (2009) A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4(2):155–169

    Article  Google Scholar 

  • Guerrero-Juarez CF, Plikus MV (2018) Emerging nonmetabolic functions of skin fat. Nat Rev Endocrinol 14(3):163–173

    Article  Google Scholar 

  • Gur-Cohen S et al (2019) Stem cell-driven lymphatic remodeling coordinates tissue regeneration. Science 366:1218

    Article  Google Scholar 

  • Hansen LS et al (1984) The influence of the hair cycle on the thickness of mouse skin. Anat Rec 210(4):569–573

    Article  Google Scholar 

  • Harel S et al (2015) Pharmacologic inhibition of JAK-STAT signaling promotes hair growth. Sci Adv 1(9):e1500973

    Article  Google Scholar 

  • Headington JT (1987) Hair follicle biology and topical minoxidil: possible mechanisms of action. Dermatologica 175(Suppl 2):19–22

    Article  Google Scholar 

  • Heitman N et al (2020) Dermal sheath contraction powers stem cell niche relocation during hair cycle regression. Science 367(6474):161–166

    Google Scholar 

  • Hibberts NA, Howell AE, Randall VA (1998) Balding hair follicle dermal papilla cells contain higher levels of androgen receptors than those from non-balding scalp. J Endocrinol 156(1):59–65

    Article  Google Scholar 

  • Ho WKW et al (2019) Feather arrays are patterned by interacting signalling and cell density waves. PLoS Biol 17(2):e3000132

    Article  Google Scholar 

  • Horne KA, Jahoda CA (1992) Restoration of hair growth by surgical implantation of follicular dermal sheath. Development 116(3):563–571

    Google Scholar 

  • Hsu YC, Pasolli HA, Fuchs E (2011) Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 144(1):92–105

    Article  Google Scholar 

  • Hsu YC, Li L, Fuchs E (2014a) Emerging interactions between skin stem cells and their niches. Nat Med 20(8):847–856

    Article  Google Scholar 

  • Hsu YC, Li L, Fuchs E (2014b) Transit-amplifying cells orchestrate stem cell activity and tissue regeneration. Cell 157(4):935–949

    Article  Google Scholar 

  • Huang WY et al (2017a) Mobilizing transit-amplifying cell-derived ectopic progenitors prevents hair loss from chemotherapy or radiation therapy. Cancer Res 77(22):6083–6096

    Article  Google Scholar 

  • Huang WY et al (2017b) Stress-induced premature senescence of dermal papilla cells compromises hair follicle epithelial-mesenchymal interaction. J Dermatol Sci 86(2):114–122

    Article  Google Scholar 

  • Huang WY et al (2019) Anagen hair follicle repair: timely regenerative attempts from plastic extra-bulge epithelial cells. Exp Dermatol 28(4):406–412

    Article  Google Scholar 

  • Huang YC et al (2013) Scalable production of controllable dermal papilla spheroids on PVA surfaces and the effects of spheroid size on hair follicle regeneration. Biomaterials 34(2):442–451

    Article  Google Scholar 

  • Inaba M, Harn HI, Chuong CM (2019) Turing patterning with and without a global wave. PLoS Biol 17(3):e3000195

    Article  Google Scholar 

  • Inui S et al (2003) Identification of androgen-inducible TGF-beta1 derived from dermal papilla cells as a key mediator in androgenetic alopecia. J Investig Dermatol Symp Proc 8(1):69–71

    Article  MathSciNet  Google Scholar 

  • Ito M et al (2002) Label-retaining cells in the bulge region are directed to cell death after plucking, followed by healing from the surviving hair germ. J Invest Dermatol 119(6):1310–1316

    Article  Google Scholar 

  • Ito M et al (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11(12):1351–1354

    Article  Google Scholar 

  • Ito M et al (2007) Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447(7142):316–320

    Article  Google Scholar 

  • Jahoda CA, Horne KA, Oliver RF (1984) Induction of hair growth by implantation of cultured dermal papilla cells. Nature 311(5986):560–562

    Article  Google Scholar 

  • Jaks V et al (2008) Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 40(11):1291–1299

    Article  Google Scholar 

  • Jameson J, Havran WL (2007) Skin gammadelta T-cell functions in homeostasis and wound healing. Immunol Rev 215(1):114–122

    Article  Google Scholar 

  • Kaufman KD et al (1998) Finasteride in the treatment of men with androgenetic alopecia. Finasteride male pattern hair loss study group. J Am Acad Dermatol 39(4 Pt 1):578–589

    Article  Google Scholar 

  • Kollar EJ (1970) The induction of hair follicles by embryonic dermal papillae. J Invest Dermatol 55(6):374–378

    Article  Google Scholar 

  • Kreuzaler PA et al (2011) Stat3 controls lysosomal-mediated cell death in vivo. Nat Cell Biol 13(3):303–309

    Article  Google Scholar 

  • Kumamoto T et al (2003) Hair follicles serve as local reservoirs of skin mast cell precursors. Blood 102(5):1654–1660

    Article  Google Scholar 

  • Kwack MH et al (2008) Dihydrotestosterone-inducible dickkopf 1 from balding dermal papilla cells causes apoptosis in follicular keratinocytes. J Invest Dermatol 128(2):262–269

    Article  Google Scholar 

  • Kwack MH et al (2012) Dihydrotestosterone-inducible IL-6 inhibits elongation of human hair shafts by suppressing matrix cell proliferation and promotes regression of hair follicles in mice. J Invest Dermatol 132(1):43–49

    Article  Google Scholar 

  • Lai JJ et al (2012) The role of androgen and androgen receptor in skin-related disorders. Arch Dermatol Res 304(7):499–510

    Article  Google Scholar 

  • Lee P et al (2017) Stimulation of hair follicle stem cell proliferation through an IL-1 dependent activation of γδT-cells. Elife 6:366

    Google Scholar 

  • Legue E, Nicolas JF (2005) Hair follicle renewal: organization of stem cells in the matrix and the role of stereotyped lineages and behaviors. Development 132(18):4143–4154

    Article  Google Scholar 

  • Legue E, Sequeira I, Nicolas JF (2010) Hair follicle renewal: authentic morphogenesis that depends on a complex progression of stem cell lineages. Development 137(4):569–577

    Article  Google Scholar 

  • Lei M et al (2014) Modulating hair follicle size with Wnt10b/DKK1 during hair regeneration. Exp Dermatol 23(6):407–413

    Article  Google Scholar 

  • Lei M, Yang L, Chuong CM (2017) Getting to the core of the dermal papilla. J Invest Dermatol 137(11):2250–2253

    Article  Google Scholar 

  • Lei MX, Chuong CM, Widelitz RB (2013) Tuning Wnt signals for more or fewer hairs. J Invest Dermatol 133(1):7–9

    Article  Google Scholar 

  • Leishman E et al (2013) Foxp1 maintains hair follicle stem cell quiescence through regulation of Fgf18. Development 140(18):3809–3818

    Article  Google Scholar 

  • Li KN et al (2019) Skin vasculature and hair follicle cross-talking associated with stem cell activation and tissue homeostasis. Elife 8

    Google Scholar 

  • Li L, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327(5965):542–545

    Article  Google Scholar 

  • Lin KK et al (2009) Circadian clock genes contribute to the regulation of hair follicle cycling. PLoS Genet 5(7):e1000573

    Article  Google Scholar 

  • Lindner G et al (1997) Analysis of apoptosis during hair follicle regression (catagen). Am J Pathol 151(6):1601–1617

    Google Scholar 

  • Longest head hair (female) (2004) http://www.guinnessworldrecords.com/world-records/longest-hair-(female)

  • Lu CP et al (2016) Spatiotemporal antagonism in mesenchymal-epithelial signaling in sweat versus hair fate decision. Science 354(6319)

    Article  Google Scholar 

  • Maini PK, Baker RE, Chuong CM (2006) Developmental biology. The Turing model comes of molecular age. Science 314(5804):1397–1398

    Article  Google Scholar 

  • Mai-Yi Fan S et al (2018) Efficacy and safety of a low-level light therapy for androgenetic alopecia: a 24-week, randomized, double-blind, self-comparison, sham device-controlled trial. Dermatol Surg 44(11):1411–1420

    Article  Google Scholar 

  • Marshall WA, Tanner JM (1969) Variations in pattern of pubertal changes in girls. Arch Dis Child 44(235):291–303

    Article  Google Scholar 

  • Marshall WA, Tanner JM (1970) Variations in the pattern of pubertal changes in boys. Arch Dis Child 45(239):13–23

    Article  Google Scholar 

  • Matsumura H et al (2016) Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science 351(6273):aad4395

    Article  Google Scholar 

  • Maurer M, Paus R, Czarnetzki BM (1995) Mast cells as modulators of hair follicle cycling. Exp Dermatol 4(4 Pt 2):266–271

    Article  Google Scholar 

  • Maurer M et al (1997) The mast cell products histamine and serotonin stimulate and TNF-alpha inhibits the proliferation of murine epidermal keratinocytes in situ. J Dermatol Sci 16(1):79–84

    Article  Google Scholar 

  • McConnell JD et al (1992) Finasteride, an inhibitor of 5 alpha-reductase, suppresses prostatic dihydrotestosterone in men with benign prostatic hyperplasia. J Clin Endocrinol Metab 74(3):505–508

    Google Scholar 

  • McElwee KJ et al (2003) Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla. J Invest Dermatol 121(6):1267–1275

    Article  Google Scholar 

  • McGarvey EL et al (2001) Psychological sequelae and alopecia among women with cancer. Cancer Pract 9(6):283–289

    Article  Google Scholar 

  • Mendez-Ferrer S et al (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452(7186):442–447

    Article  Google Scholar 

  • Mesa KR et al (2015) Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool. Nature 522(7554):94–97

    Article  Google Scholar 

  • Millar SE (2002) Molecular mechanisms regulating hair follicle development. J Invest Dermatol 118(2):216–225

    Article  Google Scholar 

  • Mok KW et al (2019) Dermal condensate niche fate specification occurs prior to formation and is placode progenitor dependent. Dev Cell 48(1):32–48. e5

    Article  Google Scholar 

  • Muller-Rover S et al (2001) A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 117(1):3–15

    Article  Google Scholar 

  • Murphy G et al (2001) The molecular determinants of sunburn cell formation. Exp Dermatol 10(3):155–160

    Article  Google Scholar 

  • Murray PJ et al (2012) Modelling hair follicle growth dynamics as an excitable medium. PLoS Comput Biol 8(12):e1002804

    Article  Google Scholar 

  • Myung PS et al (2013) Epithelial Wnt ligand secretion is required for adult hair follicle growth and regeneration. J Invest Dermatol 133(1):31–41

    Article  Google Scholar 

  • Nicu C et al (2019) Do human dermal adipocytes switch from lipogenesis in anagen to lipophagy and lipolysis during catagen in the human hair cycle? Exp Dermatol 28(4):432–435

    Article  Google Scholar 

  • Nyholt DR et al (2003) Genetic basis of male pattern baldness. J Invest Dermatol 121(6):1561–1564

    Article  Google Scholar 

  • Ohyama M et al (2006) Characterization and isolation of stem cell-enriched human hair follicle bulge cells. J Clin Invest 116(1):249–260

    Article  Google Scholar 

  • Olsen EA et al (2006) The importance of dual 5alpha-reductase inhibition in the treatment of male pattern hair loss: results of a randomized placebo-controlled study of dutasteride versus finasteride. J Am Acad Dermatol 55(6):1014–1023

    Article  Google Scholar 

  • Orentreich N (1959) Autografts in alopecias and other selected dermatological conditions. Ann N Y Acad Sci 83:463–479

    Article  Google Scholar 

  • Osaka N et al (2007) ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds. J Cell Biol 176(7):903–909

    Article  Google Scholar 

  • Oshima H et al (2001) Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104(2):233–245

    Article  Google Scholar 

  • Oshimori N, Fuchs E (2012) Paracrine TGF-beta signaling counterbalances BMP-mediated repression in hair follicle stem cell activation. Cell Stem Cell 10(1):63–75

    Article  Google Scholar 

  • Paladini RD et al (2005) Modulation of hair growth with small molecule agonists of the hedgehog signaling pathway. J Invest Dermatol 125(4):638–646

    Article  Google Scholar 

  • Paus R, Cotsarelis G (1999) The biology of hair follicles. N Engl J Med 341(7):491–497

    Article  Google Scholar 

  • Paus R et al (1994a) Mast cell involvement in murine hair growth. Dev Biol 163(1):230–240

    Article  Google Scholar 

  • Paus R et al (1994b) Chemotherapy-induced alopecia in mice. Induction by cyclophosphamide, inhibition by cyclosporine A, and modulation by dexamethasone. Am J Pathol 144(4):719–734

    Google Scholar 

  • Paus R et al (1997) Transforming growth factor-beta receptor type I and type II expression during murine hair follicle development and cycling. J Invest Dermatol 109(4):518–526

    Article  Google Scholar 

  • Paus R et al (1998) Generation and cyclic remodeling of the hair follicle immune system in mice. J Invest Dermatol 111(1):7–18

    Article  Google Scholar 

  • Paus R, Muller-Rover S, Botchkarev VA (1999) Chronobiology of the hair follicle: hunting the “hair cycle clock”. J Investig Dermatol Symp Proc 4(3):338–345

    Article  Google Scholar 

  • Paus R et al (2003) The hair follicle and immune privilege. J Investig Dermatol Symp Proc 8(2):188–194

    Article  Google Scholar 

  • Paus R et al (2013) Pathobiology of chemotherapy-induced hair loss. Lancet Oncol 14(2):e50–e59

    Article  Google Scholar 

  • Pena-Jimenez D et al (2019) Lymphatic vessels interact dynamically with the hair follicle stem cell niche during skin regeneration in vivo. EMBO J 38(19):e101688

    Article  Google Scholar 

  • Petukhova L et al (2010) Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature 466(7302):113–117

    Article  Google Scholar 

  • Philpott M, Paus R (1998) Principles of hair follicle morphogenesis. In: Chuong CM (ed) Molecular basis of epithelial appendage morphogenesis. R.G. Landers Company, Austin, pp 75–110

    Google Scholar 

  • Plikus MV (2012) New activators and inhibitors in the hair cycle clock: targeting stem cells’ state of competence. J Invest Dermatol 132(5):1321–1324

    Article  Google Scholar 

  • Plikus MV et al (2008) Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451(7176):340–344

    Article  Google Scholar 

  • Plikus MV et al (2011) Self-organizing and stochastic behaviors during the regeneration of hair stem cells. Science 332(6029):586–589

    Article  Google Scholar 

  • Plikus MV et al (2013) Local circadian clock gates cell cycle progression of transient amplifying cells during regenerative hair cycling. Proc Natl Acad Sci USA 110(23):E2106–E2115

    Article  Google Scholar 

  • Porter RM et al (2004) Functional analysis of keratin components in the mouse hair follicle inner root sheath. Br J Dermatol 150(2):195–204

    Article  Google Scholar 

  • Potten CS, Booth C, Pritchard DM (1997) The intestinal epithelial stem cell: the mucosal governor. Int J Exp Pathol 78(4):219–243

    Article  Google Scholar 

  • Rahmani W et al (2014) Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type. Dev Cell 31(5):543–558

    Article  Google Scholar 

  • Rahmani W et al (2018) Macrophages promote wound-induced hair follicle regeneration in a CX3CR1- and TGF-beta1-dependent manner. J Invest Dermatol 138(10):2111–2122

    Article  Google Scholar 

  • Randall VA, Hibberts NA, Hamada K (1996) A comparison of the culture and growth of dermal papilla cells from hair follicles from non-balding and balding (androgenetic alopecia) scalp. Br J Dermatol 134(3):437–444

    Article  Google Scholar 

  • Randall VA et al (2000) The hair follicle: a paradoxical androgen target organ. Horm Res 54(5–6):243–250

    Google Scholar 

  • Reynolds AJ, Jahoda CA (1992) Cultured dermal papilla cells induce follicle formation and hair growth by trans differentiation of an adult epidermis. Development 115(2):587–593

    Google Scholar 

  • Rishikaysh P et al (2014) Signaling involved in hair follicle morphogenesis and development. Int J Mol Sci 15(1):1647–1670

    Article  Google Scholar 

  • Rodeheffer MS, Birsoy K, Friedman JM (2008) Identification of white adipocyte progenitor cells in vivo. Cell 135(2):240–249

    Article  Google Scholar 

  • Rompolas P et al (2012) Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature 487(7408):496–499

    Article  Google Scholar 

  • Rossi A et al (2012) Minoxidil use in dermatology, side effects and recent patents. Recent Patents Inflamm Allergy Drug Discov 6(2):130–136

    Article  Google Scholar 

  • Schneider MR, Schmidt-Ullrich R, Paus R (2009) The hair follicle as a dynamic miniorgan. Curr Biol 19(3):R132–R142

    Article  Google Scholar 

  • Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7–25

    Google Scholar 

  • Sennett R, Rendl M (2012) Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Semin Cell Dev Biol 23(8):917–927

    Article  Google Scholar 

  • Sequeira I, Nicolas JF (2012) Redefining the structure of the hair follicle by 3D clonal analysis. Development 139(20):3741–3751

    Article  Google Scholar 

  • Sheen YS et al (2015) Visible red light enhances physiological anagen entry in vivo and has direct and indirect stimulative effects in vitro. Lasers Surg Med 47(1):50–59

    Article  Google Scholar 

  • Sick S et al (2006) WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science 314(5804):1447–1450

    Article  Google Scholar 

  • Silver AF, Chase HB (1970) DNA synthesis in the adult hair germ during dormancy (telogen) and activation (early anagen). Dev Biol 21(3):440–451

    Article  Google Scholar 

  • Stenn KS, Paus R (2001) Controls of hair follicle cycling. Physiol Rev 81(1):449–494

    Article  Google Scholar 

  • Stöhr P (1903) Entwicklungsgeschichte des menschlichen Wollhaares. Anat Hefte 23:65

    Article  Google Scholar 

  • Strazzulla LC et al (2018) Alopecia areata: disease characteristics, clinical evaluation, and new perspectives on pathogenesis. J Am Acad Dermatol 78(1):1–12

    Article  Google Scholar 

  • Tang D et al (2019) The molecular machinery of regulated cell death. Cell Res 29(5):347–364

    Article  Google Scholar 

  • Thornton MJ et al (1993) Differences in testosterone metabolism by beard and scalp hair follicle dermal papilla cells. Clin Endocrinol 39(6):633–639

    Article  Google Scholar 

  • Tian H et al (2011) A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478(7368):255–259

    Article  Google Scholar 

  • Tobin DJ et al (2003) Plasticity and cytokinetic dynamics of the hair follicle mesenchyme during the hair growth cycle: implications for growth control and hair follicle transformations. J Investig Dermatol Symp Proc 8(1):80–86

    Article  Google Scholar 

  • Tumbar T et al (2004) Defining the epithelial stem cell niche in skin. Science 303(5656):359–363

    Article  Google Scholar 

  • Turksen K et al (1992) Interleukin 6: insights to its function in skin by overexpression in transgenic mice. Proc Natl Acad Sci USA 89(11):5068–5072

    Article  Google Scholar 

  • Unna P (1876) Beiträge zur Histologie und Entwiekelungsgeschichte der menschlichen Oberhaut und ihrer Anhangsgebilde. Arch Mikr Anat 12:29

    Article  Google Scholar 

  • Vanscott EJ, Ekel TM, Auerbach R (1963) Determinants of rate and kinetics of cell division in scalp hair. J Invest Dermatol 41:269–273

    Google Scholar 

  • Wang E, McElwee KJ (2011) Etiopathogenesis of alopecia areata: why do our patients get it? Dermatol Ther 24(3):337–347

    Article  Google Scholar 

  • Wang ECE et al (2019) A subset of TREM2(+) dermal macrophages secretes Oncostatin M to maintain hair follicle stem cell quiescence and inhibit hair growth. Cell Stem Cell 24(4):654–669. e6

    Article  Google Scholar 

  • Wang EHC et al (2018) JAK inhibitors for treatment of alopecia Areata. J Invest Dermatol 138(9):1911–1916

    Article  Google Scholar 

  • Wang Q et al (2017a) A multi-scale model for hair follicles reveals heterogeneous domains driving rapid spatiotemporal hair growth patterning. Elife 6

    Google Scholar 

  • Wang WH et al (2017c) Activation of mTORC1 signaling is required for timely hair follicle regeneration from radiation injury. Radiat Res 188(6):681–689

    Article  Google Scholar 

  • Wang X et al (2017b) Macrophages induce AKT/beta-catenin-dependent Lgr5(+) stem cell activation and hair follicle regeneration through TNF. Nat Commun 8(1)

    Google Scholar 

  • Wilson A et al (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135(6):1118–1129

    Article  Google Scholar 

  • Wu YF et al (2015) Enhancing hair follicle regeneration by nonablative fractional laser: assessment of irradiation parameters and tissue response. Lasers Surg Med 47(4):331–341

    Article  Google Scholar 

  • Xie G et al (2015) Testing chemotherapeutic agents in the feather follicle identifies a selective blockade of cell proliferation and a key role for sonic hedgehog signaling in chemotherapy-induced tissue damage. J Invest Dermatol 135(3):690–700

    Article  Google Scholar 

  • Xin T et al (2018) Flexible fate determination ensures robust differentiation in the hair follicle. Nat Cell Biol 20(12):1361–1369

    Article  Google Scholar 

  • Xing L et al (2014) Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat Med 20(9):1043–1049

    Article  Google Scholar 

  • Yang H et al (2017) Epithelial-mesenchymal micro-niches govern stem cell lineage choices. Cell 169(3):483–496. e13

    Article  Google Scholar 

  • Young TH et al (2008) Self-assembly of dermal papilla cells into inductive spheroidal microtissues on poly(ethylene-co-vinyl alcohol) membranes for hair follicle regeneration. Biomaterials 29(26):3521–3530

    Article  Google Scholar 

  • Yu Z et al (2018) Hoxc-dependent mesenchymal niche heterogeneity drives regional hair follicle regeneration. Cell Stem Cell 23(4):487–500. e6

    Article  Google Scholar 

  • Zappacosta AR (1980) Reversal of baldness in patient receiving minoxidil for hypertension. N Engl J Med 303(25):1480–1481

    Google Scholar 

  • Zhang B et al (2016a) Hair follicles’ transit-amplifying cells govern concurrent dermal adipocyte production through sonic hedgehog. Genes Dev 30(20):2325–2338

    Article  Google Scholar 

  • Zhang B et al (2016b) Hair follicles’ transit-amplifying cells govern concurrent dermal adipocyte production through Sonic Hedgehog. Genes Develop 30(20):2325–2338

    Article  Google Scholar 

  • Zhang LJ et al (2015) Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science 347(6217):67–71

    Article  Google Scholar 

  • Zhang YV et al (2009) Distinct self-renewal and differentiation phases in the niche of infrequently dividing hair follicle stem cells. Cell Stem Cell 5(3):267–278

    Article  Google Scholar 

  • Zhang Z et al (2019) Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice. J Clin Invest 129(12):5327–5342

    Article  Google Scholar 

  • Zwick RK et al (2018) Anatomical, physiological, and functional diversity of adipose tissue. Cell Metab 27(1):68–83

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Taiwan Bio-Development Foundation (TBF) (to SJL), Taiwan Ministry of Science and Technology (MOST107-2314-B-002-064-MY3; 108-2811-B-002-583), National Taiwan University Hospital (UN108-029, 109S4567, 108-T17, 109-T17), and Taiwan National Health Research Institutes (NHRI-EX108-10811EI, NHRI-EX109-10811EI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Jan Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lin, SJ., Huang, WY., Chen, CC., Lei, M., Hong, JB. (2020). Hair Follicle Stem Cells and Hair Regeneration. In: Gimble, J., Marolt Presen, D., Oreffo, R., Redl, H., Wolbank, S. (eds) Cell Engineering and Regeneration. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-37076-7_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-37076-7_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-37076-7

  • Online ISBN: 978-3-319-37076-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics