Skip to main content

Molecular Evolution of Pituitary Adenylyl Cyclase-Activating Polypeptide Subfamily and Cognate Receptor Subfamily

  • Chapter
  • First Online:
Pituitary Adenylate Cyclase Activating Polypeptide — PACAP

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 11))

Abstract

The evolution of the secretin/pituitary adenylyl cyclase-activating polypeptide (PACAP) family of peptides in relation to three rounds of genome duplication events occurred during vertebrate emergency has been an area of intense research focus in the past 10 years. This is possible mostly due to the advance in DNA sequencing technology; as a result, genomic DNA sequence data of representative species of evolutionarily important lineage that cover both vertebrates and invertebrates are released. By bioinformatics, data mining, molecular cloning, phylogenetic studies, and synteny analysis, we are now beginning to comprehend the evolution of various peptide ligands and their receptors from invertebrates to vertebrates. In summary, these pieces of information support the establishment of current vertebrate PACAP and PACAP receptor subfamilies via two whole-genome duplications. To date, the most ancient forms of PACAP/glucagon identified are from cephalochordate and urochordate prior to the 2R. The confirmation of bfPACAP/glucagon receptor-ligand pair indicates the origin of PACAP/glucagon peptides and receptor before the cephalochordate–vertebrate split. By gene and genome duplications, the ancestral PACAP/glucagon and receptor evolved to become PACAP and glucagon ligand and receptor subfamilies as observed in tetrapods today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arimura A. PACAP: the road to discovery. Peptides. 2007;28:1617–9.

    Article  CAS  PubMed  Google Scholar 

  2. Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, et al. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun. 1989;164:567–74.

    Article  CAS  PubMed  Google Scholar 

  3. Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev. 2009;61:283–357.

    Article  CAS  PubMed  Google Scholar 

  4. Vaudry D, Gonzalez BJ, Basille M, Yon L, Fournier A, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev. 2000;52:269–324.

    CAS  PubMed  Google Scholar 

  5. Miyata A, Jiang L, Dahl RD, Kitada C, Kubo K, Fujino M, et al. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun. 1990;170:643–8. 0006-291X(90)92140-U[pii].

    Article  CAS  PubMed  Google Scholar 

  6. Piggins HD, Stamp JA, Burns J, Rusak B, Semba K. Distribution of pituitary adenylate cyclase activating polypeptide (PACAP) immunoreactivity in the hypothalamus and extended amygdala of the rat. J Comp Neurol. 1996;376:278–94. 10.1002/(SICI)1096-9861(19961209)376:2<278::AID-CNE9>3.0.CO;2-0 [pii].

    Google Scholar 

  7. Hannibal J, Mikkelsen JD, Clausen H, Holst JJ, Wulff BS, Fahrenkrug J. Gene expression of pituitary adenylate cyclase activating polypeptide (PACAP) in the rat hypothalamus. Regul Pept. 1995;55:133–48. 016701159400099 J [pii].

    Article  CAS  PubMed  Google Scholar 

  8. Masuo Y, Suzuki N, Matsumoto H, Tokito F, Matsumoto Y, Tsuda M, et al. Regional distribution of pituitary adenylate cyclase activating polypeptide (PACAP) in the rat central nervous system as determined by sandwich-enzyme immunoassay. Brain Res. 1993;602:57–63. 0006-8993(93)90241-E [pii].

    Article  CAS  PubMed  Google Scholar 

  9. Ghatei MA, Takahashi K, Suzuki Y, Gardiner J, Jones PM, Bloom SR. Distribution, molecular characterization of pituitary adenylate cyclase-activating polypeptide and its precursor encoding messenger RNA in human and rat tissues. J Endocrinol. 1993;136:159–66.

    Article  CAS  PubMed  Google Scholar 

  10. Arimura A, Somogyvari-Vigh A, Miyata A, Mizuno K, Coy DH, Kitada C. Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes. Endocrinology. 1991;129:2787–9.

    Article  CAS  PubMed  Google Scholar 

  11. Hwang JI, Moon MJ, Park S, Kim DK, Cho EB, Ha N, et al. Expansion of secretin-like G protein-coupled receptors and their peptide ligands via local duplications before and after two rounds of whole-genome duplication. Mol Biol Evol. 2013;30:1119–30.

    Article  CAS  PubMed  Google Scholar 

  12. On JS, Duan C, Chow BK, Lee LT. Functional pairing of class B1 ligand-GPCR in cephalochordate provides evidence of the origin of PTH and PACAP/glucagon receptor family. Mol Biol Evol. 2015;32:2048–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sherwood NM, Krueckl SL, McRory JE. The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev. 2000;21:619–70.

    CAS  PubMed  Google Scholar 

  14. Cardoso JC, Felix RC, Power DM. Nematode and arthropod genomes provide new insights into the evolution of class 2 B1 GPCRs. PLoS One. 2014;9(3):e92220.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ng SY, Chow BK, Kasamatsu J, Kasahara M, Lee LT, Agnathan VIP. PACAP and their receptors: ancestral origins of today’s highly diversified forms. PLoS One. 2012;7:e44691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Underwood CR, Garibay P, Knudsen LB, Hastrup S, Peters GH, Rudolph R, et al. Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor. J Biol Chem. 2010;285:723–30.

    Article  CAS  PubMed  Google Scholar 

  17. Sun C, Song D, Davis-Taber RA, Barrett LW, Scott VE, Richardson PL, et al. Solution structure and mutational analysis of pituitary adenylate cyclase-activating polypeptide binding to the extracellular domain of PAC1-RS. Proc Natl Acad Sci U S A. 2007;104:7875–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marx UC, Adermann K, Bayer P, Forssmann WG, Rosch P. Solution structures of human parathyroid hormone fragments hPTH(1–34) and hPTH(1–39) and bovine parathyroid hormone fragment bPTH(1–37). Biochem Biophys Res Commun. 2000;267:213–20.

    Article  CAS  PubMed  Google Scholar 

  19. Jin L, Briggs SL, Chandrasekhar S, Chirgadze NY, Clawson DK, Schevitz RW, et al. Crystal structure of human parathyroid hormone 1-34 at 0.9-A resolution. J Biol Chem. 2000;275:27238–44.

    CAS  PubMed  Google Scholar 

  20. Neumann JM, Couvineau A, Murail S, Lacapere JJ, Jamin N, Laburthe M. Class-B GPCR activation: is ligand helix-capping the key? Trends Biochem Sci. 2008;33:314–9.

    Google Scholar 

  21. Pal K, Melcher K, Xu HE. Structure and mechanism for recognition of peptide hormones by Class B G-protein-coupled receptors. Acta Pharmacol Sin. 2012;33:300–11.

    Google Scholar 

  22. Moon MJ, Kim HY, Park S, Kim DK, Cho EB, Park CR, et al. Evolutionarily conserved residues at glucagon-like peptide-1 (GLP-1) receptor core confer ligand-induced receptor activation. J Biol Chem. 2012;287:3873–84.

    Article  CAS  PubMed  Google Scholar 

  23. Moon MJ, Kim HY, Kim SG, Park J, Choi DS, Hwang JI, et al. Tyr1 and Ile7 of glucose-dependent insulinotropic polypeptide (GIP) confer differential ligand selectivity toward GIP and glucagon-like peptide-1 receptors. Mol Cells. 2010;30:149–54.

    Google Scholar 

  24. Pioszak AA, Xu HE. Molecular recognition of parathyroid hormone by its G protein-coupled receptor. Proc Natl Acad Sci U S A. 2008;105:5034–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cardoso JC, Vieira FA, Gomes AS, Power DM. The serendipitous origin of chordate secretin peptide family members. BMC Evol Biol. 2010;10:135.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Matsuda K, Yoshida T, Nagano Y, Kashimoto K, Yatohgo T, Shimomura H, et al. Purification and primary structure of pituitary adenylate cyclase activating polypeptide (PACAP) from the brain of an elasmobranch, stingray, Dasyatis akajei. Peptides. 1998;19:1489–95. S0196-9781(98)00091-6 [pii].

    Article  CAS  PubMed  Google Scholar 

  27. McRory J, Sherwood NM. Two protochordate genes encode pituitary adenylate cyclase-activating polypeptide and related family members. Endocrinology. 1997;138:2380–90.

    CAS  PubMed  Google Scholar 

  28. Cardoso JC, Vieira FA, Gomes AS, Power DM. PACAP, VIP and their receptors in the metazoa: insights about the origin and evolution of the ligand-receptor pair. Peptides. 2007;28:1902–19. S0196-9781(07)00272-0 [pii].

    Google Scholar 

  29. Mirabeau O, Joly JS. Molecular evolution of peptidergic signaling systems in bilaterians. Proc Natl Acad Sci U S A. 2013;110:E2028–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, et al. The amphioxus genome and the evolution of the chordate karyotype. Nature. 2008;453:1064–71.

    Article  CAS  PubMed  Google Scholar 

  31. Delsuc F, Brinkmann H, Chourrout D, Philippe H. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature. 2006;439:965–8.

    Article  CAS  PubMed  Google Scholar 

  32. Holland LZ. Evolution of new characters after whole genome duplications: insights from amphioxus. Semin Cell Dev Biol. 2013;24:101–9.

    Article  CAS  PubMed  Google Scholar 

  33. Tsagkogeorga G, Cahais V, Galtier N. The population genomics of a fast evolver: high levels of diversity, functional constraint, and molecular adaptation in the tunicate Ciona intestinalis. Genome Biol Evol. 2012;4:740–9. evs054 [pii].

    Google Scholar 

  34. Meyer A, Van de Peer Y. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays. 2005;27:937–45.

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Wong AO, Ge W. Cloning, regulation of messenger ribonucleic acid expression, and function of a new isoform of pituitary adenylate cyclase-activating polypeptide in the zebrafish ovary. Endocrinology. 2003;144:4799–810.

    Article  CAS  PubMed  Google Scholar 

  36. Fradinger EA, Sherwood NM. Characterization of the gene encoding both growth hormone-releasing hormone (GRF) and pituitary adenylate cyclase-activating polypeptide (PACAP) in the zebrafish. Mol Cell Endocrinol. 2000;165:211–9. S0303-7207(00)00251-3 [pii].

    Article  CAS  PubMed  Google Scholar 

  37. Tse DL, Pang RT, Wong AO, Chan SM, Vaudry H, Chow BK. Identification of a potential receptor for both peptide histidine isoleucine and peptide histidine valine. Endocrinology. 2002;143:1327–36.

    Article  CAS  PubMed  Google Scholar 

  38. Ohkubo S, Kimura C, Ogi K, Okazaki K, Hosoya M, Onda H, et al. Primary structure and characterization of the precursor to human pituitary adenylate cyclase activating polypeptide. DNA Cell Biol. 1992;11:21–30.

    Article  CAS  PubMed  Google Scholar 

  39. Toogood AA, Harvey S, Thorner MO, Gaylinn BD. Cloning of the chicken pituitary receptor for growth hormone-releasing hormone. Endocrinology. 2006;147:1838–46.

    Article  CAS  PubMed  Google Scholar 

  40. Parker DB, Power ME, Swanson P, Rivier J, Sherwood NM. Exon skipping in the gene encoding pituitary adenylate cyclase-activating polypeptide in salmon alters the expression of two hormones that stimulate growth hormone release. Endocrinology. 1997;138:414–23.

    CAS  PubMed  Google Scholar 

  41. Vaughan JM, Rivier J, Spiess J, Peng C, Chang JP, Peter RE, et al. Isolation and characterization of hypothalamic growth-hormone releasing factor from common carp, Cyprinus carpio. Neuroendocrinology. 1992;56:539–49.

    Article  CAS  PubMed  Google Scholar 

  42. Harvey S, Scanes CG. Comparative stimulation of growth hormone secretion in anaesthetized chickens by human pancreatic growth hormone-releasing factor (hpGRF) and thyrotrophin-releasing hormone (TRH). Neuroendocrinology. 1984;39:314–20.

    Article  CAS  PubMed  Google Scholar 

  43. Leung FC, Taylor JE. In vivo and in vitro stimulation of growth hormone release in chickens by synthetic human pancreatic growth hormone releasing factor (hpGRFs). Endocrinology. 1983;113:1913–5.

    Article  CAS  PubMed  Google Scholar 

  44. Harvey S. GHRH: a growth hormone-releasing factor in birds? Neural regulation in the vertebrate endocrine system. New York: Kluwer; 1999.

    Book  Google Scholar 

  45. Montero M, Yon L, Kikuyama S, Dufour S, Vaudry H. Molecular evolution of the growth hormone-releasing hormone/pituitary adenylate cyclase-activating polypeptide gene family. Functional implication in the regulation of growth hormone secretion. J Mol Endocrinol. 2000;25:157–68. JME00932 [pii].

    Article  CAS  PubMed  Google Scholar 

  46. Wang Y, Li J, Wang CY, Kwok AH, Leung FC. Identification of the endogenous ligands for chicken growth hormone-releasing hormone (GHRH) receptor: evidence for a separate gene encoding GHRH in submammalian vertebrates. Endocrinology. 2007;148:2405–16.

    Article  CAS  PubMed  Google Scholar 

  47. Lee LT, Siu FK, Tam JK, Lau IT, Wong AO, Lin MC, et al. Discovery of growth hormone-releasing hormones and receptors in nonmammalian vertebrates. Proc Natl Acad Sci U S A. 2007;104:2133–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tam JK, Lee LT, Chow BK. PACAP-related peptide (PRP)—molecular evolution and potential functions. Peptides. 2007;28:1920–9.

    Article  CAS  PubMed  Google Scholar 

  49. Small BC, Nonneman D. Sequence and expression of a cDNA encoding both pituitary adenylate cyclase activating polypeptide and growth hormone-releasing hormone-like peptide in channel catfish (Ictalurus punctatus). Gen Comp Endocrinol. 2001;122:354–63.

    Article  CAS  PubMed  Google Scholar 

  50. Rousseau K, Le Belle N, Pichavant K, Marchelidon J, Chow BK, Boeuf G, et al. Pituitary growth hormone secretion in the turbot, a phylogenetically recent teleost, is regulated by a species-specific pattern of neuropeptides. Neuroendocrinology. 2001;74:375–85. nen74375 [pii].

    Article  CAS  PubMed  Google Scholar 

  51. Chan KW, Yu KL, Rivier J, Chow BK. Identification and characterization of a receptor from goldfish specific for a teleost growth hormone-releasing hormone-like peptide. Neuroendocrinology. 1998;68:44–56. nen68044 [pii].

    Google Scholar 

  52. Wu S, Roch GJ, Cervini LA, Rivier JE, Sherwood NM. Newly-identified receptors for peptide histidine-isoleucine and GHRH-like peptide in zebrafish help to elucidate the mammalian secretin superfamily. J Mol Endocrinol. 2008;41:343–66.

    Article  CAS  PubMed  Google Scholar 

  53. Wang Y, Li J, Wang CY, Kwok AY, Zhang X, Leung FC. Characterization of the receptors for chicken GHRH and GHRH-related peptides: identification of a novel receptor for GHRH and the receptor for GHRH-LP (PRP). Domest Anim Endocrinol. 2010;38:13–31.

    Article  PubMed  Google Scholar 

  54. Tam JK, Lee LT, Cheng CH, Chow BK. Discovery of a new reproductive hormone in teleosts: pituitary adenylate cyclase-activating polypeptide-related peptide (PRP). Gen Comp Endocrinol. 2011;173:405–10.

    Article  CAS  PubMed  Google Scholar 

  55. Wang Y, Huang G, Li J, Meng F, He X, Leung FC. Characterization of chicken secretin (SCT) and secretin receptor (SCTR) genes: a novel secretin-like peptide (SCT-LP) and secretin encoded in a single gene. Mol Cell Endocrinol. 2012;348:270–80.

    Article  PubMed  Google Scholar 

  56. Tam JK, Lau KW, Lee LT, Chu JY, Ng KM, Fournier A, et al. Origin of secretin receptor precedes the advent of tetrapoda: evidence on the separated origins of secretin and orexin. PLoS One. 2011;6:e19384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cardoso JC, Felix RC, Trindade M, Power DM. Fish genomes provide novel insights into the evolution of vertebrate secretin receptors and their ligand. Gen Comp Endocrinol. 2014;209:82–92.

    Article  CAS  PubMed  Google Scholar 

  58. Smith JJ, Kuraku S, Holt C, Sauka-Spengler T, Jiang N, Campbell MS, et al. Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat Genet. 2013;45:415–21, 421e1–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Grace CR, Perrin MH, DiGruccio MR, Miller CL, Rivier JE, Vale WW, et al. NMR structure and peptide hormone binding site of the first extracellular domain of a type B1 G protein-coupled receptor. Proc Natl Acad Sci U S A. 2004;101:12836–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cardoso JC, Clark MS, Viera FA, Bridge PD, Gilles A, Power DM. The secretin G-protein-coupled receptor family: teleost receptors. J Mol Endocrinol. 2005;34:753–65.

    Article  CAS  PubMed  Google Scholar 

  61. Harmar AJ, Arimura A, Gozes I, Journot L, Laburthe M, Pisegna JR, et al. International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol Rev. 1998;50:265–70.

    CAS  PubMed  Google Scholar 

  62. Wong AO, Leung MY, Shea WL, Tse LY, Chang JP, Chow BK. Hypophysiotropic action of pituitary adenylate cyclase-activating polypeptide (PACAP) in the goldfish: immunohistochemical demonstration of PACAP in the pituitary, PACAP stimulation of growth hormone release from pituitary cells, and molecular cloning of pituitary type I PACAP receptor. Endocrinology. 1998;139:3465–79.

    CAS  PubMed  Google Scholar 

  63. Hoo RL, Alexandre D, Chan SM, Anouar Y, Pang RT, Vaudry H, et al. Structural and functional identification of the pituitary adenylate cyclase-activating polypeptide receptor VPAC2 from the frog Rana tigrina rugulosa. J Mol Endocrinol. 2001;27:229–38. JME01023 [pii].

    Article  CAS  PubMed  Google Scholar 

  64. Alexandre D, Anouar Y, Jegou S, Fournier A, Vaudry H. Molecular cloning, mRNA distribution and pharmacological characterization of a VIP/PACAP receptor in the frog Rana ridibunda. Ann N Y Acad Sci. 2000;921:300–3.

    Article  CAS  PubMed  Google Scholar 

  65. Bewley MS, Pena JT, Plesch FN, Decker SE, Weber GJ, Forrest Jr JN. Shark rectal gland vasoactive intestinal peptide receptor: cloning, functional expression, and regulation of CFTR chloride channels. Am J Physiol Regul Integr Comp Physiol. 2006;291:R1157–64.

    Article  CAS  PubMed  Google Scholar 

  66. Chow BK, Yuen TT, Chan KW. Molecular evolution of vertebrate VIP receptors and functional characterization of a VIP receptor from goldfish Carassius auratus. Gen Comp Endocrinol. 1997;105:176–85.

    Google Scholar 

  67. Yegorov S, Good S. Using paleogenomics to study the evolution of gene families: origin and duplication history of the relaxin family hormones and their receptors. PLoS One. 2012;7:e32923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim DK, Cho EB, Moon MJ, Park S, Hwang JI, Kah O, et al. Revisiting the evolution of gonadotropin-releasing hormones and their receptors in vertebrates: secrets hidden in genomes. Gen Comp Endocrinol. 2011;170:68–78.

    Article  CAS  PubMed  Google Scholar 

  69. Abi-Rached L, Gilles A, Shiina T, Pontarotti P, Inoko H. Evidence of en bloc duplication in vertebrate genomes. Nat Genet. 2002;31:100–5.

    Article  CAS  PubMed  Google Scholar 

  70. Muffato M, Roest Crollius H. Paleogenomics in vertebrates, or the recovery of lost genomes from the mist of time. Bioessays. 2008;30:122–34.

    Article  PubMed  Google Scholar 

  71. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res. 2007;17:1254–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Birnbaum D, Coulier F, Pebusque MJ, Pontarotti P. “Paleogenomics”: looking in the past to the future. J Exp Zool. 2000;288:21–2.

    Article  CAS  PubMed  Google Scholar 

  73. Amores A, Catchen J, Ferrara A, Fontenot Q, Postlethwait JH. Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication. Genetics. 2011;188:799–808.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Billy K. C. Chow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

On, J.S.W., Chow, B.K.C. (2016). Molecular Evolution of Pituitary Adenylyl Cyclase-Activating Polypeptide Subfamily and Cognate Receptor Subfamily. In: Reglodi, D., Tamas, A. (eds) Pituitary Adenylate Cyclase Activating Polypeptide — PACAP. Current Topics in Neurotoxicity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-35135-3_1

Download citation

Publish with us

Policies and ethics