Skip to main content

Generalized Frequency Division Multiplexing: A Flexible Multi-Carrier Waveform for 5G

  • Chapter
  • First Online:
5G Mobile Communications

Abstract

The next generation of wireless networks will face different challenges from new scenarios. The conventional Orthogonal Frequency Division Multiplexing (OFDM) has shown difficulty in fulfilling all demanding requirements. This chapter presents Generalized Frequency Division Multiplexing (GFDM) as a strong waveform candidate for future wireless communications systems which can be combined with several techniques such as precoding or Offset Quadrature Amplitude Modulation (OQAM) and which offers the flexibility to emulate a variety of other popular waveforms as corner cases. This property suggests GFDM as a key technology to allow reconfiguration of the physical layer (PHY), enabling a fast and dynamic evolution of the infrastructure. Additionally, multicarrier transmission theory is covered in terms of Gabor theory. Details on synchronization, channel estimation algorithms and MIMO techniques for GFDM are presented and a description of a proof-of-concept demonstrator shows the suitability of GFDM for future wireless networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Pirinen, A brief overview of 5G research activities, in 1st International Conference on 5G for Ubiquitous Connectivity (2014), pp. 17–22

    Google Scholar 

  2. N. Michailow, M. Matthé, I. Gaspar, A. Caldevilla, L. Mendes, A. Festag, G. Fettweis, Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Trans. Commun. 62 (9), 3045–3061 (2014)

    Article  Google Scholar 

  3. G. Fettweis, M. Krondorf, S. Bittner, GFDM - generalized frequency division multiplexing, in VTC Spring 2009 - IEEE 69th Vehicular Technology Conference (IEEE, Barcelona, 2009), pp. 1–4

    Book  Google Scholar 

  4. M. Matthé, I.S. Gaspar, G. Fettweis, Short paper: reduced complexity calculation of LMMSE filter coefficients, in Proceedings IEEE 82nd Vehicular Technology Conference, Boston (2015)

    Google Scholar 

  5. I.S. Gaspar, N. Michailow, A.N. Caldevilla, E. Ohlmer, S. Krone, G. Fettweis, Low complexity GFDM receiver based on sparse frequency domain processing, in IEEE 77th Vehicular Technology Conference, 2013. VTC Spring (2013)

    Google Scholar 

  6. A. Farhang, N. Marchetti, L.E. Doyle, Low complexity modem design for GFDM. IEEE Trans. Signal Process. 99, 1–1 (2015). Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7332798

    Google Scholar 

  7. N. Michailow, I. Gaspar, Generalized frequency division multiplexing: analysis of an alternative multi-carrier technique for next generation cellular systems, in … Systems (ISWCS), … (2012). Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6328352

    Google Scholar 

  8. M. Matthé, L. Mendes, N. Michailow, D. Zhang, G. Fettweis, Widely linear estimation for space-time-coded GFDM in low-latency applications. IEEE Trans. Commun. 63 (11), 4501–4509 (2015)

    Article  Google Scholar 

  9. N. Michailow, L. Mendes, M. Matthé, I. Gaspar, A. Festag, G. Fettweis, Robust WHT-GFDM for the next generation of wireless networks. IEEE Commun. Lett. 19 (1), 106–109 (2015)

    Article  Google Scholar 

  10. H. Bölcskei, Orthogonal frequency division multiplexing based on offset QAM, in Advances in Gabor Analysis, ed. by H. Feichtinger, T. Strohmer. Applied and Numerical Harmonic Analysis (Birkhäuser, Boston, 2003), pp. 321–352

    Google Scholar 

  11. I. Gaspar, M. Matthé, N. Michailow, L. Mendes, D. Zhang, G. Fettweis, Frequency-shift Offset-QAM for GFDM. IEEE Commun. Lett. 99, 1–1 (2015)

    Google Scholar 

  12. R.W. Chang, Synthesis of band-limited orthogonal signals for multichannel data transmission. Bell Syst. Tech. J. 45 (10), 1775–1796 (1966)

    Article  Google Scholar 

  13. B. Saltzberg, Performance of an efficient parallel data transmission system. IEEE Trans. Commun. Technol. 15 (6), 805–811 (1967)

    Article  Google Scholar 

  14. G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, F. Wiedmann, 5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Commun. Mag. 52 (2), 97–105 (2014)

    Article  Google Scholar 

  15. P. Banelli, S. Buzzi, G. Colavolpe, A. Modenini, F. Rusek, A. Ugolini, Modulation formats and waveforms for 5G networks: Who will be the heir of OFDM?: an overview of alternative modulation schemes for improved spectral efficiency. IEEE Signal Process. Mag. 31 (6), 80–93 (2014)

    Article  Google Scholar 

  16. H. Lin, P. Siohan, Multi-carrier modulation analysis and WCP-COQAM proposal. EURASIP J. Adv. Signal Process. 2014 (1), 79 (2014). Available: http://asp.eurasipjournals.com/content/2014/1/79

  17. A.M. Tonello, A novel multi-carrier scheme: cyclic block filtered multitone modulation, in 2013 IEEE International Conference on Communications (ICC) (IEEE, Budapest, 2013), pp. 5263–5267

    Book  Google Scholar 

  18. I. Kanaras, A. Chorti, M.R. Rodrigues, I. Darwazeh, Spectrally efficient fdm signals: bandwidth gain at the expense of receiver complexity, in IEEE International Conference on Communications, 2009. ICC’09 (IEEE, Dresden, 2009)

    Google Scholar 

  19. M. Matthé, L. Mendes, I. Gaspar, N. Michailow, G. Fettweis, Multi-user time-reversal STC-GFDM for 5G networks. IEEE Trans. Wirel. Commun. (submitted, 2014). Available: http://jwcn.eurasipjournals.springeropen.com/articles/10.1186/s13638-015-0366-6

  20. K. Gröchenig, Foundations of Time-Frequency Analysis (Birkhäuser, Boston, 2001)

    Book  MATH  Google Scholar 

  21. J.J. Benedetto, C. Heil, D.F. Walnut, Gabor systems and the Balian-Low theorem, in Gabor Analysis and Algorithms, ed. by H.G. Feichtinger, T. Strohmer (Birkhäuser, Boston, 1998), Chap. 2, pp. 85–122

    Google Scholar 

  22. J. van de Beek, M. Sandell, P. Borjesson, ML Estimation of time and frequency offset in OFDM systems. IEEE Trans. Signal Process. 45 (7), 1800–1805 (1997)

    Article  MATH  Google Scholar 

  23. T. Schmidl, D. Cox, Robust frequency and timing synchronization for OFDM. IEEE Trans. Commun. 45 (12), 1613–1621 (1997)

    Article  Google Scholar 

  24. H. Minn, M. Zeng, V. Bhargava, On Timing Offset Estimation for OFDM Systems. IEEE Commun. Lett. 4 (7), 242–244 (2000)

    Article  Google Scholar 

  25. A. Awoseyila, C. Kasparis, B.G. Evans, Improved preamble-aided timing estimation for OFDM systems. IEEE Commun. Lett. 12 (11), 825–827 (2008)

    Article  Google Scholar 

  26. I. Gaspar, G. Fettweis, An embedded midamble synchronization approach for generalized frequency division multiplexing, in IEEE Global Communications Conference (GLOBECOM) (2015)

    Google Scholar 

  27. I. Gaspar, A. Festag, G. Fettweis, Synchronization using a pseudo-circular preamble for generalized frequency division multiplexing in vehicular communication, in IEEE 82nd Vehicular Technology Conference (VTC Spring) (2015)

    Google Scholar 

  28. R.A. Horn, C.R. Johnson, Topics in Matrix Analysis (Cambridge University Press, Cambridge, 1994). Available: https://books.google.com/books?id=LeuNXB2bl5EC&pgis=1

  29. N. Al-Dhahir, Single-carrier frequency-domain equalization for space-time block-coded transmissions over frequency-selective fading channels. IEEE Commun. Lett. 5 (7), 304–306 (2001). Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=935750

    Article  Google Scholar 

  30. C. Studer, H. Bölcskei, Soft-input soft-output single tree-search sphere decoding. IEEE Trans. Inf. Theory 56 (10), 4827–4842 (2010)

    Article  MathSciNet  Google Scholar 

  31. D. Wubben, R. Bohnke, V. Kühn, K.-D. Kammeyer, MMSE extension of V-BLAST based on sorted QR decomposition, in 2003 IEEE 58th Vehicular Technology Conference, 2003. VTC 2003-Fall, vol. 1 (2003), pp. 508–512

    Google Scholar 

  32. A. Chindapol, J. Ritcey, Design, analysis, and performance evaluation for BICM-ID with square QAM constellations in Rayleigh fading channels. IEEE J. Sel. Areas Commun. 19 (5), 944–957 (2001)

    Article  Google Scholar 

  33. B. Farhang-Boroujeny, H. Zhu, Z. Shi, Markov chain Monte Carlo algorithms for CDMA and MIMO communication systems. IEEE Trans. Signal Process. 54 (5), 1896–1909 (2006)

    Article  Google Scholar 

  34. X. Mao, P. Amini, B. Farhang-Boroujeny, Markov chain Monte Carlo MIMO detection methods for high signal-to-noise ratio regimes, in Proceedings of IEEE Global Telecommunications Conference (GLOBECOM), Washington, DC (2007)

    Google Scholar 

  35. M. Senst, G. Ascheid, A Rao-Blackwellized Markov chain Monte Carlo algorithm for efficient MIMO detection, in Proc. IEEE Int. Conf. on Commun. (ICC), Tokyo (2011)

    Google Scholar 

  36. R. Datta, N. Michailow, M. Lentmaier, G. Fettweis, GFDM interference cancellation for flexible cognitive radio PHY design, in 2012 IEEE Vehicular Technology Conference (VTC Fall) (IEEE, Quebec City, 2012), pp. 1–5

    Book  Google Scholar 

  37. T. Datta, N. Ashok Kumar, A. Chockalingam, B. Rajan, A novel MCMC algorithm for near-optimal detection in large-scale uplink mulituser MIMO systems, in Proc. IEEE Inf. Theory and Appl. Workshop (ITA), San Diego (2012), pp. 69–77

    Google Scholar 

  38. D. Zhang, M. Matthé, L. Mendes, G. Fettweis, A Markov Chain Monte Carlo algorithm for near-optimum detection of MIMO-GFDM signals, in Proc. IEEE Int. Symp. on Personal, Indoor and Mobile Radio Commun. (PIMRC), Hong Kong (2015)

    Google Scholar 

  39. M. Danneberg, R. Datta, A. Festag, G. Fettweis, Experimental testbed for 5g cognitive radio access in 4g lte cellular systems, in 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM) (2014), pp. 321–324

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Matthé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Matthé, M. et al. (2017). Generalized Frequency Division Multiplexing: A Flexible Multi-Carrier Waveform for 5G. In: Xiang, W., Zheng, K., Shen, X. (eds) 5G Mobile Communications. Springer, Cham. https://doi.org/10.1007/978-3-319-34208-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34208-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34206-1

  • Online ISBN: 978-3-319-34208-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics