Skip to main content

Resource Allocation for Cooperative D2D Communication Networks

  • Chapter
  • First Online:
5G Mobile Communications

Abstract

Device-to-device (D2D) communications technology is currently being investigated as a potential enabler for the fifth generation (5G) communication networks. Significant performance gains are achievable in a cooperative D2D framework, wherein the user equipments (UEs) cooperate with each other to enable a variety of low-latency proximity-based services or to establish indirect communication links with the Base Station (BS) whenever direct service coverage is not possible. This chapter is focused on the throughput gains achievable in the latter scenario, i.e., when few UEs perform relaying operations to provide indirect service coverage to other UEs. In this direction, resource allocation problems are formulated for a variety of system models operating under the orthogonal frequency division multiple access (OFDMA) cellular or cognitive radio (CR) access architectures. The performance of mobile D2D relaying under different scenarios is evaluated. The system models are designed to study the benefits of incorporating additional capabilities at the devices, such as packet storage (using buffers), energy-harvesting, and cognitive spectrum access within the cooperative D2D framework. Depending on the system model, efficient algorithms are proposed to obtain optimal power allocation, subcarrier assignment, subcarrier pairing, and relay-UE selection policies which maximize the system throughput under a variety of system-dependant constraints. Simulation results demonstrate the effectiveness of our proposed algorithms and the performance improvement of mobile D2D-relaying networks over conventional networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We refer to a relay-UE and destination-UE combination as a D2D pair if a D2D communication link can be established between them.

References

  1. S. Mumtaz, J. Rodriguez, Smart Device to Smart Device Communication (Springer, Cham, 2014)

    Book  Google Scholar 

  2. L. Song, D. Niyato, Z. Han, E. Hossain, Wireless Device-to-Device Communications and Networks (Cambridge University Press, New York, NY, 2015)

    Book  Google Scholar 

  3. K.W. Choi, Z. Han, Device-to-device discovery for proximity-based service in LTE-advanced system IEEE J. Sel. Areas Commun. 33 (1), 55–66 (2015)

    Google Scholar 

  4. L. Lei, Z. Zhong, C. Lin, X. Shen, Operator controlled device-to-device communications in LTE-advanced networks. IEEE Wirel. Commun. 19 (3), 96–104 (2012)

    Article  Google Scholar 

  5. L. Wei, R. Q. Hu, Y. Qian, G. Wu, Enable device-to-device communications underlaying cellular networks: challenges and research aspects. IEEE Commun. Mag. 52 (6) 90–96 (2014)

    Article  Google Scholar 

  6. L. Song, D. Niyato, Z. Han, E. Hossain, Game-theoretic resource allocation methods for device-to-device (D2D) communication. IEEE Wirel. Commun. 21 (3), 136–144 (2014)

    Article  Google Scholar 

  7. M.N. Tehrani, M. Uysal, H. Yanikomeroglu, Device-to-device communication in 5G cellular networks: challenges, solutions, and future directions. IEEE Commun. Mag. 52 (5), 86–92 (2014)

    Article  Google Scholar 

  8. A. Asadi, Q. Wang, V. Mancuso, A survey on device-to-device communication in cellular networks. IEEE Commun. Surv. Tutorials 16 (4), 1801–1819 (2014)

    Article  Google Scholar 

  9. S. Bi, C. Ho, R. Zhang, Wireless powered communication: opportunities and challenges. IEEE Commun. Mag. 53 (4), 117–125 (2015)

    Article  Google Scholar 

  10. S. Berger, M. Kuhn, A. Wittneben et al., Recent advances in amplify-and-forward two-hop relaying. IEEE Commun. Mag. 47 (7), 50–56 (2009)

    Article  Google Scholar 

  11. K.T.K Cheung, S. Yang, L. Hanzo, Achieving maximum energy-efficiency in multi-relay OFDMA cellular networks: a fractional programming approach. IEEE Trans. Commun. 61 (7), 2746–2757 (2013)

    Google Scholar 

  12. D.W.K. Ng, R. Schober, Cross-layer scheduling for OFDMA amplify-and-forward relay networks. IEEE Trans. Veh. Technol. 59 (3), 1443–1458 (2010)

    Article  Google Scholar 

  13. M.S. Alam, J.W. Mark, X. Shen, Relay selection and resource allocation for multi-user cooperative OFDMA networks. IEEE Trans. Wirel. Commun. 12 (5), 2193–2205 (2013)

    Article  Google Scholar 

  14. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, New York, NY, 2004)

    Book  MATH  Google Scholar 

  15. S.O. Krumke, Integer Programming. Polyhedra and Algorithms. Draft, January 4, 2006

    Google Scholar 

  16. R. Arab Loodaricheh, S. Mallick, V.K. Bhargava, Energy efficient resource allocation for OFDMA cellular networks with user cooperation and QoS provisioning. IEEE Trans. Wirel. Commun. 13 (11), 6132–6146 (2014)

    Article  Google Scholar 

  17. S. Boyd, L. Xiao, A. Mutapcic, Subgradient methods, in Notes for EE392o Stanford University Autumn, 2003–2004

    Google Scholar 

  18. W. Dang, M. Tao, H. Mu, J. Huang, Subcarrier-pair based resource allocation for cooperative multi-relay OFDM systems. IEEE Trans. Wirel. Commun. 9 (5), 1640–1649 (2010)

    Article  Google Scholar 

  19. H. Zhu, J. Wang, Device-to-device communication in cellular networks with fractional frequency reuse, in Proceedings of 2014 IEEE ICC, pp. 5503–5507

    Google Scholar 

  20. L. Liu, R. Zhang, K.C. Chua, Wireless information transfer with opportunistic energy harvesting. IEEE Trans. Wirel. Commun. 12 (1), 288–300 (2013)

    Article  Google Scholar 

  21. D.W.K. Ng, E.S. Lo, R. Schober, Wireless information and power transfer: energy efficiency optimization in OFDMA systems. IEEE Trans. Wirel. Commun. 12, 6352–6370 (2013)

    Article  Google Scholar 

  22. T. Wang, A. Cano, B. Giannakis et al., High-performance cooperative demodulation with decode-and-forward relays. IEEE Trans. Commun. 55 (7), 1427–1438 (2007)

    Article  Google Scholar 

  23. D.P. Bertsekas, Dynamic Programming and Optimal Control. vol. 1, no. 2 (Athena Scientific, Belmont, MA, 1995)

    Google Scholar 

  24. R. Arab Loodaricheh, S. Mallick, V.K. Bhargava, Resource allocation for OFDMA systems with selective relaying and energy harvesting, in Proceedings of 2014 IEEE VTC (Fall), pp. 1–5

    Google Scholar 

  25. H.W. Kuhn, The Hungarian method for the assignment problem. Naval Res. Logistic Q. 2, 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Zhao, C. Yang, G.Y. Li, D. Li, A. Soong, Power and channel allocation for cooperative relay in cognitive radio networks. IEEE J. Sel. Top. Sign. Proces. 5 (1), 151–159 (2011)

    Article  Google Scholar 

  27. X. Gong, W. Yuan, W. Liu, W. Cheng, S. Wang, A cooperative relay scheme for secondary communication in cognitive radio networks, in Proceedings of 2008 IEEE Globecom, pp. 1–6

    Google Scholar 

  28. C. Sun, K.B. Letaief, User cooperation in heterogeneous cognitive radio networks with interference reduction, in Proceedings of 2008 IEEE ICC, pp. 3193–3197

    Google Scholar 

  29. D. López-Pérez, A. Valcarce, G. Roche, J. Zhang, OFDMA femtocells: a roadmap on interference avoidance. IEEE Commun. Mag. 47 (9), 41–48 (2009)

    Article  Google Scholar 

  30. I. Demirdogen, I. Guvenc, H. Arslan, A simulation study of performance trade-offs in open access femtocell networks, in Proceedings of 2010 IEEE PIMRC, pp. 151–156

    Google Scholar 

  31. S. Kadloor, R. Adve, Relay selection and power allocation in cooperative cellular networks. IEEE Trans. Wirel. Commun. 9 (5), 1676–1685 (2010)

    Article  Google Scholar 

  32. T. Al-Khasib, M. Shenouda, L. Lampe, Dynamic spectrum management for multiple-antenna cognitive radio systems: design with imperfect CSI. IEEE Trans. Wirel. Commun. 10 (9), 2850–2859 (2011)

    Article  Google Scholar 

  33. J.N. Laneman, D.N.C. Tse, G.W. Wornell, Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans. Inf. Theory 50 (12), 3062–3080 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Medard, The effect upon channel capacity in wireless communications of perfect and imperfect knowledge of the channel. IEEE Trans. Inf. Theory 46 (3), 933–946 (2000)

    Article  MATH  Google Scholar 

  35. G. Zheng, S. Ma, K.-K. Wong, T.-S. Ng, Robust beamforming in cognitive radio. IEEE Trans. Wirel. Commun. 9 (2), 570–576 (2010)

    Article  Google Scholar 

  36. Z.K.M. Ho, V.K.N. Lau, R.S.K. Cheng, Closed loop cross layer scheduling for goodput maximization in frequency selective environment with no CSIT, in Proceedings of 2007 IEEE WCNC, 299–303

    Google Scholar 

  37. D. I. Kim, L. B. Le, E. Hossain, Joint rate and power allocation for cognitive radios in dynamic spectrum access environment. IEEE Trans. Wirel. Commun. 7 (12), 5517–5527 (2008)

    Google Scholar 

  38. L. Zhang, Y.-C. Liang, Y. Xin, H. Poor, Robust cognitive beamforming with partial channel state information. IEEE Trans. Wirel. Commun. 8 (8), 4143–4153 (2009)

    Article  Google Scholar 

  39. S. Mallick, M.M. Rashid, V.K. Bhargava, Joint relay selection and power allocation for decode-and-forward cellular relay network with channel uncertainty. IEEE Trans. Wirel. Commun. 11 (10), 3496–3508 (2012)

    Article  Google Scholar 

  40. G. Zheng, K.-K. Wong, B. Otterston, Robust cognitive beamforming with bounded channel uncertainties. IEEE Trans. Signal Process. 57 (12), 4871–4881 (2009)

    Article  MathSciNet  Google Scholar 

  41. S. Mallick, R. Devarajan, R. Arab Loodaricheh, V.K. Bhargava, Robust resource optimization for cooperative cognitive radio networks with imperfect CSI. IEEE Trans. Wirel. Commun. 14 (2), 907–920 (2015)

    Article  Google Scholar 

  42. P.-J. Chung, H. Du, J. Gondzio, A probabilistic constraint approach for robust transmit beamforming with imperfect channel information. IEEE Trans. Signal Process. 59 (6), 2773–2782 (2011)

    Article  MathSciNet  Google Scholar 

  43. D.R. Cox, N. Reid, Approximations to non-central distributions. Can. J. Stat. 15 (2), 105–114 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  44. I. Hammerstrom, A. Wittneben, On the optimal power allocation for nonregenerative OFDM relay links, in Proc. 2006 IEEE ICC, pp. 4463–4468

    Google Scholar 

  45. M. Choi, J. Park, S. Choi, Simplified power allocation scheme for cognitive multi-node relay networks. IEEE Trans. Wirel. Commun. 11 (6), 2008–2012 (2012)

    Article  Google Scholar 

  46. M. Shaat, F. Bader, Asymptotically optimal resource allocation in OFDM-based cognitive networks with multiple relays. IEEE Trans. Wirel. Commun. 11 (3), 892–897 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankhanaad Mallick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mallick, S., Loodaricheh, R.A., Prasad, K.N.R.S.V., Bhargava, V. (2017). Resource Allocation for Cooperative D2D Communication Networks. In: Xiang, W., Zheng, K., Shen, X. (eds) 5G Mobile Communications. Springer, Cham. https://doi.org/10.1007/978-3-319-34208-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34208-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34206-1

  • Online ISBN: 978-3-319-34208-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics