Skip to main content

Ultra-Dense Network Architecture and Technologies for 5G

  • Chapter
  • First Online:
5G Mobile Communications

Abstract

In recent years, with the growing popularity of smart device, our daily life has come to revolve around with spectacularly successful mobile Internet services, which lead to the explosion of data traffic in mobile communication networks. The requirement on communication networks has become a critical issue. By 2020, the global mobile traffic volume will have about 1000 times growth compared to that of 2010. Recent research on 5G requirements indicates that the traffic density in crowded city or hotspot area will reach 20~Tbps/Km2. Ultra dense network(UDN) has been introduced to meet the traffic capacity requirement of 5G. as a most promising method. Challenges, network architectures, key technologies will be discussed in this section.

This work was supported in parts by the National Natural Science Foundation of China for Distinguished Young Scholar under Grant 61425012.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ITU-R M.2243, Assessment of the global mobile broadband deployments and forecasts for International Mobile Telecommunications, March 2011

    Google Scholar 

  2. Cisco, Visual Networking Index: Global Mobile Data Traffic Forecast Update 2013–2018, February 2014

    Google Scholar 

  3. IMT-2020 (5G) Promotion Group, 5G Vision and Requirement, May 2014

    Google Scholar 

  4. V. Chandrasekhar, J.G. Andrews et~al., Femtocell networks: a survey. IEEE Commun. Mag. 46(9), 59–67 (2008)

    Google Scholar 

  5. ITU-R M.2290, Future spectrum requirements estimate for terrestrial IMT, 2014

    Google Scholar 

  6. S. Chen, F. Qin et al., User-centric ultra-dense networks (UUDN) for 5G: challenges, methodologies and directions. IEEE Wirel. Commun. Mag. 23(2), 78–85 (2016)

    Google Scholar 

  7. S. Chen, Y. Wang et~al., LTE-Hi: a new solution to future wireless mobile broadband challenges and requirements. IEEE Wirel. Commun. Mag. 21(3), 70–78 (2014)

    Google Scholar 

  8. ITU-R M.2320, Future technology trends of terrestrial IMT systems, November 2014

    Google Scholar 

  9. P. Popovski, V. Braun et~al., Initial report on horizontal topics, first results and 5G system concept, METIS Deliverable D6.2, 2014

    Google Scholar 

  10. S. Chen, J. Zhao, The requirements, challenges and technologies for 5G of terrestrial mobile telecommunication. IEEE Commun. Mag. 52(5), 36–43 (2014)

    Article  Google Scholar 

  11. IMT-2020 (5G) Promotion Group, 5G Wireless Technology Architecture, May 2015

    Google Scholar 

  12. S. Chen, Y. Shi et~al., Mobility-driven networks (MDN): from evolutions to visions of mobility management. IEEE Netw. Mag. 28(4), 66–73 (2014)

    Google Scholar 

  13. H. Zhang, S. Chen et~al., Interference management for heterogeneous network with spectral efficiency improvement. IEEE Wirel. Commun. Mag. 22(2), 101–107 (2015)

    Google Scholar 

  14. R. Baldemair, T. Irnich et~al., Ultra-dense networks in millimeter-wave frequencies. IEEE Commun. Mag. 53(1), 202–208 (2015)

    Google Scholar 

  15. H. Wang, X. Zhou et~al., Coverage and throughput analysis with a non-uniform small cell deployment. IEEE Trans. Wirel. Commun. 13(4), 2047–2059 (2014)

    Google Scholar 

  16. P. Rost, C.J. Bernardos et~al., Cloud technologies for flexible 5G radio access networks. IEEE Commun. Mag. 52(5), 68–76 (2014)

    Google Scholar 

  17. I. Hwang, B. Song et~al., A holistic view on hyper-dense heterogeneous and small cell networks. IEEE Commun. Mag. 51(6), 20–27 (2013)

    Google Scholar 

  18. U. Doetsch, N. Bayer et~al., Final Report on Architecture, METIS Deliverable D6.4, 2015

    Google Scholar 

  19. R. EI Hattachi, J. Erfanian et~al., NGMN 5G Initiative White Paper, February 2015

    Google Scholar 

  20. V. Garcia, Y.Q. Zhou et~al., Coordinated multipoint transmission in dense cellular networks with user-centric adaptive clustering. IEEE Trans. Wirel. Commun. 13(8), 4297–4308 (2014)

    Google Scholar 

  21. H. Ali-Ahmad, C. Cicconetti et~al., CROWD: an SDN approach for DenseNets, in 2013 Second European Workshop on Software Defined Networks (EWSDN), pp. 25–31, October 2013

    Google Scholar 

  22. H. Wang, S. Chen et~al., SoftNet: a software defined decentralized mobile network architecture toward 5G. IEEE Netw. Mag. 29(2), 16–22 (2015)

    Google Scholar 

  23. 3GPP TS 23.401 v12.3.0, GPRS Enhancements for E-UTRAN Access, December 2013

    Google Scholar 

  24. 3GPP TS 33.401, 3GPP System Architecture Evolution (SAE); Security architecture (Release 12), October 2014

    Google Scholar 

  25. 3GPP TR36.842 v12.0.0, Study on Small Cell enhancements for E-UTRA and E-UTRAN: Higher layer aspects, January 2014

    Google Scholar 

  26. 3GPP TR 36.902, Evolved Universal Terrestrial Radio Access Network (E-UTRAN): Self-configuring and self-optimizing network (SON) use cases and solutions, 2009

    Google Scholar 

  27. S. Tombaz, P. Monti et~al., Is backhaul becoming a bottleneck for green wireless access networks? in 2014 IEEE International Conference on Communications (ICC2014), pp. 4029–4035, June 2014

    Google Scholar 

  28. 3GPP TS 36.216, Evolved Universal Terrestrial Radio Access (E-UTRA): Physical layer for relaying operation, 2014

    Google Scholar 

  29. X. Ge, H. Cheng et~al., 5G wireless backhaul networks: challenges and research advances. IEEE Netw. Mag. 28(6), 6–11 (2014)

    Google Scholar 

  30. X. Su, K. Hi Chang, A comparative study on wireless backhaul solutions for beyond 4G network, in 2013 International Conference on Information Networking (ICOIN2013), pp. 505–510, January 2013

    Google Scholar 

  31. J. Núñez Martínez, Self-organized backpressure routing for the wireless mesh backhaul of small cells, Universitat Politècnica De Catalunya, 2014

    Google Scholar 

  32. 3GPP TS 36.331, Evolved Universal Terrestrial Radio Access (E-UTRA): Radio Resource Control (RRC), 2014

    Google Scholar 

  33. J. Zhang, J. Feng et~al., Mobility enhancement and performance evaluation for 5G ultra dense networks, in 2015 IEEE Wireless Communications and Networking Conference (WCNC), pp.1793–1798, March 2015

    Google Scholar 

  34. P. Kela, J. Turkka et~al., Borderless Mobility in 5G Outdoor Ultra-Dense Networks, the journal for rapid open access publishing, pp. 1462–1476, August 2015

    Google Scholar 

  35. F. Giust, L. Cominardi, C.J. Bernardos, Distributed mobility management for future 5G networks: overview and analysis of existing approaches. IEEE Commun. Mag. 53, 141–148 (2015)

    Article  Google Scholar 

  36. J.C. Zuniga, C.J. Bernardos et~al., Distributed mobility management: a standards landscape. IEEE Commun. Mag. 51(3), 80–87 (2013)

    Google Scholar 

  37. A. Reznik, C. Ye et~al., Mobility Management for Dense Networks, vol. 34, pp. 1–4, May 2011

    Google Scholar 

  38. V. Yazici, U.C. Kozat et~al., A new control plane for 5G network architecture with a case study on unified handoff, mobility, and routing management. IEEE Commun. Mag. 52(11), 76–85 (2014)

    Google Scholar 

  39. F. Sivrikaya, S. Salsano, M. Bonola, M. Trenca, Mobility Support in User-Centric Networks, Part IV of User-Centric Networking (Springer International Publishing, 2014), pp. 269–288

    Google Scholar 

  40. B. Kaufman, E. Erkip et~al., Femtocells in cellular radio networks with successive interference cancellation, in 2011 IEEE International Conference on Communications Workshops (ICC), pp. 1–5, June 2011

    Google Scholar 

  41. Z. Xu, L. Geoffrey Ye et~al., Throughput and optimal threshold for FFR schemes in OFDMA cellular networks. IEEE Trans. Wirel. Commun. 11(8), 2776–2785 (2012)

    Google Scholar 

  42. S.-P. Chung, Y.-W. Chen, Performance analysis of call admission control in SFR-based LTE systems. IEEE Commun. Lett. 16(7), 1014–1017 (2012)

    Article  Google Scholar 

  43. K. Zheng, Y. Wang et~al., Graph-based interference coordination scheme in orthogonal frequency-division multiplexing access Femtocell networks. IET Commun. 5(7), 2533–2541 (2011)

    Google Scholar 

  44. K. Zheng, B. Fan, J. Liu, Y. Lin, W. Wang, Interference coordination for OFDM-based multihop LTE-advanced networks. IEEE Wirel. Commun. 18(7), 54–63 (2011)

    Article  Google Scholar 

  45. H.-M. Anders, N. Aria, The multiplexing gain of wireless networks, in 2005 International Symposium on Information Theory (ISIT2005), pp. 2065–2069, September 2005

    Google Scholar 

  46. K. Zheng, Y. Wang, W. Wang, M. Dohler, J. Wang, Energy-efficient wireless in-home: the need for interference-controlled Femtocells. IEEE Wirel. Commun. 18(6), 36–44 (2011)

    Article  Google Scholar 

  47. R. Baldemair, E. Dahlman et~al., Evolving wireless communications: addressing the challenges and expectations of the future. IEEE Veh. Technol. Mag. 8(1), 24–30 (2013)

    Google Scholar 

  48. H. Tullberg, Z. Li et~al., Towards the METIS 5G concept: first view on horizontal topics concepts, in 2014 European Conference on Networks and Communications (EuCNC2014), pp. 1–5, October 2014

    Google Scholar 

  49. R. Wang, H. Hu et~al., Potentials and challenges of C-RAN supporting multi-RATs toward 5G mobile networks. IEEE Access 2, 1187–1195 (2014)

    Google Scholar 

  50. Y.-N. Li, J. Li et~al., Energy efficient small cell operation under ultra dense cloud radio access networks, in 2014 Globecom Workshops (GC Workshops), pp. 1120–1125, December 2014

    Google Scholar 

Download references

Acknowledgment

The authors would like to give special thanks to Dr. Ming Ai and Mr. Zhonglin Chen of CATT for their kind reviews and revisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanzhi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, S., Qin, F., Hu, B., Li, X., Liu, J. (2017). Ultra-Dense Network Architecture and Technologies for 5G. In: Xiang, W., Zheng, K., Shen, X. (eds) 5G Mobile Communications. Springer, Cham. https://doi.org/10.1007/978-3-319-34208-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34208-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34206-1

  • Online ISBN: 978-3-319-34208-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics