Skip to main content

Spectrally Efficient Frequency Division Multiplexing for 5G

  • Chapter
  • First Online:
5G Mobile Communications

Abstract

The focus of this chapter is on novel multi-carrier communication techniques, which share the common goal of increasing spectrum efficiency in future communication systems. In particular, a technology termed Spectrally Efficient Frequency Division Multiplexing (SEFDM) is described in detail outlining its benefits, challenges and trade-offs when compared to the current state-of-the-art. A decade of research has been devoted to examining SEFDM from different angles; mathematical modelling, algorithm optimisation, hardware implementation and system experimentation. The aim of this chapter is to therefore give a taste of this technology and in doing so, the chapter is organised as follows; first, it is explained how SEFDM fits within the remit of future 5th Generation (5G) communication systems; second, the design principles and implementation trade-offs associated with SEFDM systems are described; third, a number of linear and more sophisticated polynomial detection schemes are compared in terms of performance and complexity; finally, the chapter concludes by outlining a number of experimental testbeds which have been developed for the purpose of evaluating the performance of SEFDM in practical scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The notations \(\mathfrak{R}e\) and \(\mathfrak{I}m\) represent the real and imaginary parts of a complex number, respectively, l denotes the SEFDM symbol index, n denotes the sub-carrier index and s l, n represents the information symbol conveyed by sub-carrier with index n during the time stamp with index l.

  2. 2.

    A matrix is singular if its determinant is equal to zero [71].

  3. 3.

    An N-tuple is a sequence or ordered set of N elements.

  4. 4.

    Results showing the performance of SEFDM in fading channels have been published in the work of Chorti et al. [11] and Isam et al. [40].

References

  1. S.I. Ahmed, Spectrally Efficient FDM Communication Signals and Transceivers: Design, Mathematical Modeling and System Optimization, PhD thesis, University College London (UCL), 2011

    Google Scholar 

  2. K. Amiri, C. Dick, R. Rao, J.R. Cavallaro, Flex-Sphere: an FPGA configurable sort-free sphere detector for multi-user MIMO wireless system, in Proceedings of the Software Defined Radio Technology Conference, Washington, DC, SDR, 2008

    Google Scholar 

  3. J.B. Anderson, F. Rusek, Improving OFDM: multistream faster-than-Nyquist signaling, in 4th International Symposium Turbo Codes and Related Topics, ISTC, Munich, 2006

    Google Scholar 

  4. J.G. Andrews, S. Buzzi, W. Choi, S.V. Hanly, A. Lozano, A.C.K. Soong, J.C. Zhang, What will 5G be? IEEE J. Sel. Areas Commun. 32 (6), 1065–1082 (2014)

    Google Scholar 

  5. D.H. Bailey, The fractional Fourier transform and applications. SIAM Rev. 33 (3), 389–404 (1991)

    Google Scholar 

  6. A Barbieri, D. Fertonani, G. Colavolpe, Improving the spectral efficiency of linear modulations through time-frequency packing, in IEEE International Symposium on Information Theory, ISIT, Toronto, vol. 2, 2008, pp. 2742–2746

    Google Scholar 

  7. L. Bluestein, A linear filtering approach to the computation of discrete Fourier transform. IEEE Trans. Audio Electroacoust. 18 (4), 451–455 (1970)

    Article  Google Scholar 

  8. A. Burg, VLSI Circuits for MIMO Communication Systems, PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich, 2006

    Google Scholar 

  9. J.W. Burns, Measuring spectrum efficiency - The art of spectrum utilisation metrics. Tech. rep., Aegis Systems Ltd., 2002

    Book  Google Scholar 

  10. A. Chorti, I. Kanaras, Masked M-QAM OFDM: a simple approach for enhancing the security of OFDM systems, in IEEE 20th International Symposium Personal, Indoor and Mobile Radio Communication, PIMRC, Tokyo, 2009, pp. 1682–1686

    Google Scholar 

  11. A. Chorti, I. Kanaras, M.R.D. Rodrigues, I. Darwazeh, Joint channel equalization and detection of Spectrally Efficient {FDM} signals, in 2010 IEEE 21st International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), 2010, pp. 177–182

    Google Scholar 

  12. R.G. Clegg, S. Isam, I. Kanaras, I. Darwazeh, A practical system for improved efficiency in frequency division multiplexed wireless networks. IET Commun. 6 (4), 449 (2012)

    Google Scholar 

  13. I. Darwazeh, T. Xu, T. Gui, Y. Bao, Z. Li, Optical SEFDM system; bandwidth saving using non-orthogonal sub-carriers. Photon. Technol. Lett. IEEE 26 (4), 352–355 (2014)

    Article  Google Scholar 

  14. I. Darwazeh, T. Xu, T. Gui, Y. Bao, Z. Li, Optical spectrally efficient FDM system for electrical and optical bandwidth saving, in 2014 IEEE International Conference on Communications (ICC), 2014, pp. 3432–3437

    Google Scholar 

  15. D. Dasalukunte, F. Rusek, V. Öwall, Multicarrier faster-than-Nyquist transceivers: hardware architecture and performance analysis. IEEE Trans. Circ. Syst. I: Reg. Papers 58, 1–12 (2010)

    MathSciNet  Google Scholar 

  16. B. Farhang-Boroujeny, Filter bank multicarrier modulation: a waveform candidate for 5G and beyond. Adv. Electr. Eng. 2014, 25 (2014)

    Google Scholar 

  17. B. Farhang-Boroujeny, R. Kempter, Multicarrier communication techniques for spectrum sensing and communication in cognitive radios. IEEE Commun. Mag. 46 (4), 80–85 (2008)

    Article  Google Scholar 

  18. G.P. Fettweis, The tactile internet: applications and challenges. IEEE Veh. Technol. Mag. 9 (1), 64–70 (2014)

    Article  Google Scholar 

  19. G. Fettweis, M. Krondorf, S. Bittner, GFDM - Generalized Frequency Division Multiplexing, in IEEE 69th Vehicular Technology Conference, VTC, Barcelona, 2009

    Google Scholar 

  20. FP 7 European Project 317669, METIS (Mobile and wireless communications Enablers for Twenty-twenty (2020) Information Society) (2012). https://www.metis2020.com/

  21. D. Gabor, Theory of communication. J IEE: Part III: Radio Commun. Eng. 93 (26), 429–441 (1946)

    Google Scholar 

  22. A. Goldsmith, Wireless Communications (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

  23. G.H. Golub, C.F.V.V. Loan, Matrix Computations, 3rd edn. (The Johns Hopkins University Press, Baltimore, MD, 1996)

    MATH  Google Scholar 

  24. R.C. Grammenos, Spectrum Optimisation in Wireless Communication Systems: Technology Evaluation, System Design and Practical Implementation. PhD thesis, University College London - Department of Electronic and Electrical Engineering, 2013

    Google Scholar 

  25. R.C. Grammenos, I. Darwazeh, Hardware implementation of a practical complexity spectrally efficient FDM reconfigurable receiver, in IEEE 23rd International Symposium Personal, Indoor and Mobile Radio Communication, PIMRC, Sydney, 2012

    Google Scholar 

  26. R.C. Grammenos, I. Darwazeh, Performance trade-offs and DSP evaluation of spectrally efficient FDM detection techniques, in IEEE International Conference Communication, ICC, Budapest (2013, to appear)

    Google Scholar 

  27. R.C. Grammenos, S. Isam, I. Darwazeh, FPGA design of a truncated SVD based receiver for the detection of SEFDM signals, in IEEE 22nd International Symposium Personal, Indoor and Mobile Radio Communication, PIMRC, Toronto, 2011

    Google Scholar 

  28. J. Hagenauer, The turbo principle: tutorial introduction and state of the art, in Proceedings of the International Symposium Turbo Codes, 1997, pp. 1–11

    Google Scholar 

  29. M. Hamamura, S. Tachikawa Bandwidth efficiency improvement for multi-carrier systems, in IEEE 15th International Symposium Personal, Indoor and Mobile Radio Communication, PIMRC, Barcelona, 2004, pp. 48–52

    Google Scholar 

  30. S. Hara, R. Prasad, Overview of multicarrier {CDMA}. Commun. Mag. IEEE 35 (12), 126–133 (1997)

    Article  Google Scholar 

  31. B. Hassibi, H. Vikalo, On the sphere-decoding algorithm I. Expected complexity. IEEE Trans. Signal Process 53 (8), 2806–2818 (2005)

    Article  MathSciNet  Google Scholar 

  32. S.J. Heydari, M. Ferdosizadeh, F.A. Marvasti, Iterative detection with soft decision in spectrally efficient FDM systems. Tech. Rep. (2013). arXiv:1304.4003v1

    Google Scholar 

  33. B. Hirosaki, An orthogonally multiplexed QAM system using the discrete Fourier transform. IEEE Trans. Commun. 29 (7), 982–989 (1981)

    Article  Google Scholar 

  34. E. Hopner, An experimental modulation-demodulation scheme for high-speed data transmission. IBM J. Res. Dev. 3, 74–84 (1959)

    Article  Google Scholar 

  35. S. Isam, I. Darwazeh, Precoded spectrally efficient FDM system, in IEEE 21st International Symposium Personal Indoor and Mobile Radio Communication, PIMRC, Istanbul, 2010, pp. 99–104

    Google Scholar 

  36. S. Isam, I. Darwazeh, Simple DSP-IDFT techniques for generating spectrally efficient FDM system signals, in 7th IEEE, IET International Symposium Communication Systems Networks and Digital Signal Processing, CSNDSP, Newcastle, 2010

    Google Scholar 

  37. S. Isam, I. Darwazeh, Design and performance assessment of fixed complexity spectrally efficient FDM receivers, in IEEE 73rd Vehicular Technology Conference, VTC, Budapest, 2011

    Google Scholar 

  38. S. Isam, I. Darwazeh, Peak to average power ratio reduction in spectrally efficient FDM systems, in IEEE International Conference Telecommunication, ICT, Ayia Napa, 2011

    Google Scholar 

  39. S. Isam, I. Darwazeh, Characterizing the intercarrier interference of non-orthogonal spectrally efficient FDM system, in 8th IEEE, IET International Symposium Communication Systems Networks and Digital Signal Processing, CSNDSP, Poznan, 2012

    Google Scholar 

  40. S. Isam, I. Darwazeh, Robust channel estimation for spectrally efficient FDM system, in IEEE International Conference Telecommunication, ICT, Jounieh, 2012

    Google Scholar 

  41. S. Isam, I. Kanaras, I. Darwazeh A truncated SVD approach for fixed complexity spectrally efficient FDM receivers, in IEEE Wireless Communication and Networking Conference, WCNC, Cancun, 2011

    Google Scholar 

  42. J. Jalden, B. Ottersten, On the complexity of sphere decoding in digital communications. IEEE Trans. Signal Process. 53 (4), 1474–1484 (2005)

    Article  MathSciNet  Google Scholar 

  43. J.P. Javaudin, D. Lacroix, Technical description of the OFDM/IOTA modulation. Tech. rep., France Telecom R&D, Tech. Rep. R1-03-168, 2003

    Google Scholar 

  44. W. Jian, Y. Xun, Z. Xi-lin, D. Li, The prefix design and performance analysis of DFT-based overlapped frequency division multiplexing (OvFDM-DFT) system, in 3rd International Workshop on Signal Design and Its Applications in Communication, IWSDA, Chengdu, 2007, pp. 361–364

    Google Scholar 

  45. I. Kanaras, Spectrally Efficient Multicarrier Communication Systems: Signal Detection, Mathematical Modelling and Optimisation. PhD thesis, University College London (UCL), 2010

    Google Scholar 

  46. I. Kanaras, A. Chorti, M.R.D. Rodrigues, I. Darwazeh, A combined MMSE-ML detection for a spectrally efficient non orthogonal FDM signal, in 5th International Conference on Broadband Communications, Networks, and Systems, BROADNETS, London, 2008

    Google Scholar 

  47. I. Kanaras, A. Chorti, M.R.D. Rodrigues, I. Darwazeh, An optimum detection for a spectrally efficient non-orthogonal FDM system, in Proceedings of the 13th International OFDM-Workshop, Hamburg, 2008

    Google Scholar 

  48. I. Kanaras, A. Chorti, M.R.D. Rodrigues, I. Darwazeh, A new quasi-optimal detection algorithm for a non orthogonal Spectrally Efficient FDM, in 9th International Symposium Communications and Information Technologies, ISCIT, Incheon, 2009

    Google Scholar 

  49. I. Kanaras, A. Chorti, M.R.D. Rodrigues, I. Darwazeh, Investigation of a semidefinite programming detection for a spectrally efficient FDM system, in IEEE 20th International Symposium Personal, Indoor and Mobile Radio Communication, PIMRC, Tokyo, 2009

    Google Scholar 

  50. I. Kanaras, A. Chorti, M.R.D. Rodrigues, I. Darwazeh, Spectrally efficient FDM signals: bandwidth gain at the expense of receiver complexity, in IEEE International Conference on Communications, ICC, Dresden, 2009

    Google Scholar 

  51. I. Kanaras, A. Chorti, M.R.D. Rodrigues, A fast constrained sphere decoder for ill conditioned communication systems. IEEE Commun. Lett. 14 (11), 999–1001 (2010)

    Article  Google Scholar 

  52. W. Kozek, A.F. Molisch, Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels. IEEE J. Sel. Areas Commun. 16 (8), 1579–1589 (1998)

    Article  Google Scholar 

  53. A.D. Liveris, C.N. Georghiades, Exploiting faster-than-Nyquist signaling. IEEE Trans. Commun. 51 (9), 1502–1511 (2003)

    Article  Google Scholar 

  54. T. Matsumoto, T. Asai Frequency-overlapped multicarrier signaling with inter-carrier interference cancellation (FOLMSIC). IEICE SAT 97 (486), 69–76 (1998)

    Google Scholar 

  55. J.E. Mazo Faster-than-Nyquist signaling. Bell Syst. Tech. J. 54 (8), 1451–1462 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  56. N. Michailow, M. Lentmaier Integration of a GFDM secondary system in an OFDM primary system, in Future Network and Mobile Summit, Warsaw, 2011

    Google Scholar 

  57. S. Mikroulis, T. Xu, J.E. Mitchell, I. Darwazeh, First demonstration of a spectrally efficient {FDM} radio over fiber system topology for beyond {4G} cellular networking, in European Conference on Network and Optical Communications, NOC 2015, 2015

    Google Scholar 

  58. M. Nekovee, Cognitive radio access to TV white spaces: spectrum opportunities, commercial applications and remaining technology challenges, in IEEE International Symposium on New Frontiers Dynamic Spectrum Access Networks, DySPAN, Singapore, 2010

    Google Scholar 

  59. H. Nikopour, H. Baligh, Sparse code multiple access, in 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), 2013, pp. 332–336

    Google Scholar 

  60. D. Nopchinda, T. Xu, R. Maher, B. C. Thomsen, I. Darwazeh, Dual Polarization Coherent Optical Spectrally Efficient Frequency Division Multiplexing. IEEE Photon. Technol. Lett. 28 (1), pp. 83–86, (2016)

    Article  Google Scholar 

  61. D. Panaitopol, R. Datta, G. Fettweis, Cyclostationary detection of cognitive radio systems using GFDM modulation, in IEEE Wireless Communication and Networking Conference, WCNC, Paris, 2012, pp. 930–934

    Google Scholar 

  62. M.R. Perrett, I. Darwazeh, Flexible hardware architecture of SEFDM transmitters with real-time non-orthogonal adjustment, in IEEE International Conference on Telecommunications, ICT, Ayia Napa, 2011

    Google Scholar 

  63. M.R. Perrett, R.C. Grammenos, I. Darwazeh, A verification methodology for the detection of spectrally efficient FDM signals generated using reconfigurable hardware, in IEEE International Conference on Communications, ICC, Ottawa, 2012

    Google Scholar 

  64. J. Proakis, Digital Communications, 4th edn. (McGraw-Hill, New York, 2000)

    MATH  Google Scholar 

  65. M.R.D. Rodrigues, I. Darwazeh, Fast OFDM: a proposal for doubling the data rate of OFDM schemes, in IEEE International Conference on Telecommunication, ICT, Beijing, 2002, pp. 484–487

    Google Scholar 

  66. M.R.D. Rodrigues, I. Darwazeh, A spectrally efficient frequency division multiplexing based communications system, in Proceedings of the 8th International OFDM Workshop, Hamburg, 2003, pp. 48–49

    Google Scholar 

  67. F. Rusek, J.B. Anderson, The two dimensional Mazo limit, in Proceedings of the International Symposium Information Theory, ISIT, Adelaide, 2005, pp. 970–974

    Google Scholar 

  68. A. Sahin, I. Guvenc, H. Arslan, A survey on multicarrier communications: prototype filters, lattice structures, and implementation aspects. IEEE Commun Surv. Tutor. 16 (3), 1312–1338 (2014)

    Google Scholar 

  69. Y. Saito, A. Benjebbour, Y. Kishiyama, T. Nakamura, System-level performance evaluation of downlink non-orthogonal multiple access {(NOMA)}, in 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), 2013, pp. 611–615

    Google Scholar 

  70. F. Schaich, T. Wild, Waveform contenders for 5G - OFDM vs. FBMC vs. UFMC, in 6th International Symposium Communication, Control, and Signal Processing, 2014, pp. 457–460

    Google Scholar 

  71. G. Strang, Introduction to Linear Algebra, 4th edn. (Wellesley Cambridge Press, Wellesley, 2009)

    MATH  Google Scholar 

  72. E. Viterbo, J. Boutros A universal lattice code decoder for fading channels. IEEE Trans. Inf. Theory 45 (5), 1639–1642 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  73. R. Westwick, Mobile WiMAX versus LTE: a comparison of next generation mobile broadband technologies. J. Telecommun. Manage. 1 (1), 79–85 (2008)

    Google Scholar 

  74. P.N. Whatmough, M.R. Perrett, S. Isam, I. Darwazeh, VLSI architecture for a reconfigurable spectrally efficient FDM baseband transmitter. IEEE Trans. Circuits Syst. I: Reg. Papers 59 (5), 1–12 (2012)

    Article  MathSciNet  Google Scholar 

  75. P.N. Whatmough, M.R. Perrett, S. Isam, I. Darwazeh, {VLSI} architecture for a reconfigurable spectrally efficient {FDM} baseband transmitter. IEEE Trans. Circuits Syst. I: Reg. Papers 59 (5), 1107–1118 (2012)

    Google Scholar 

  76. G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, F. Wiedmann, {5GNOW}: non-orthogonal, asynchronous waveforms for future mobile applications. Commun. Mag. IEEE 52 (2), 97–105 (2014)

    Google Scholar 

  77. F. Xiong, M-ary amplitude shift keying OFDM system. IEEE Trans. Commun. 51 (10), 1638–1642 (2003)

    Article  Google Scholar 

  78. T. Xu, I. Darwazeh, A soft detector for spectrally efficient systems with non-orthogonal overlapped sub-carriers. Commun. Lett. IEEE 18 (10), 1847–1850 (2014)

    Article  Google Scholar 

  79. T. Xu, I. Darwazeh, M-QAM signal detection for a non-orthogonal system using an improved fixed sphere decoder, in 9th IEEE/IET International Symposium on Communication Systems, Networks & Digital Signal Processing 2014 (CSNDSP14), Manchester, 2014, pp. 623–627

    Google Scholar 

  80. T. Xu, I. Darwazeh, Multi-band reduced complexity spectrally efficient FDM systems, in 9th IEEE/IET International Symposium on Communication Systems, Networks & Digital Signal Processing 2014 (CSNDSP14), Manchester, 2014, pp. 904–909

    Google Scholar 

  81. T. Xu, I. Darwazeh, Spectrally efficient FDM: spectrum saving technique for 5G?, in 2014 1st International Conference on 5G for Ubiquitous Connectivity (5GU), 2014, pp. 273–278

    Google Scholar 

  82. T. Xu, I. Darwazeh, Bandwidth compressed carrier aggregation, in IEEE ICC 2015 - Workshop on 5G & Beyond - Enabling Technologies and Applications (ICC’15 - Workshops 23), London, 2015

    Google Scholar 

  83. T. Xu, R.C. Grammenos, I. Darwazeh, FPGA implementations of real-time detectors for a spectrally efficient FDM system, in IEEE International Conference on Telecommunications, ICT, Casablanca, 2013

    Google Scholar 

  84. T. Xu, R.C. Grammenos, F. Marvasti, I. Darwazeh, An improved fixed sphere decoder employing soft decision for the detection of non-orthogonal signals. IEEE Commun. Lett. 17 (10), 1964–1967 (2013)

    Article  Google Scholar 

  85. Y.G. Yoo, J.H. Cho, Asymptotic optimality of binary faster-than-Nyquist signaling. IEEE Commun. Lett. 14 (9), 788–790 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izzat Darwazeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Darwazeh, I., Grammenos, R.C., Xu, T. (2017). Spectrally Efficient Frequency Division Multiplexing for 5G. In: Xiang, W., Zheng, K., Shen, X. (eds) 5G Mobile Communications. Springer, Cham. https://doi.org/10.1007/978-3-319-34208-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34208-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34206-1

  • Online ISBN: 978-3-319-34208-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics