Skip to main content

Utilization Management in the Routine Hematology Laboratory

  • Chapter
  • First Online:
Utilization Management in the Clinical Laboratory and Other Ancillary Services

Abstract

The modern hematology laboratory is a highly automated operation, performing a variety of tests including blood and fluid cell counts, routine coagulation tests, and in many cases urinalysis. Despite its automated nature, the hematology laboratory also performs labor-intensive testing including microscopic review of blood and urine samples. Effective utilization management in the hematology laboratory involves initiatives to improve appropriate test ordering (reducing routine daily orders, discouraging preoperative orders in healthy patients, banning obsolete tests) and within laboratory strategies to reduce the volume of manual testing (validated instrument flagging rules). There are also new automated morphological technologies that are improving hematology workflow and efficiency. Successful implantation of these initiatives and technologies involves collaboration with clinicians on the test menu, physician education, and the implementation of decision support tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ng VL. Utilization management in the core laboratory. Clin Chim Acta. 2014;427:154–7.

    Article  CAS  PubMed  Google Scholar 

  2. Janssens PM. Managing the demand for laboratory testing: options and opportunities. Clin Chim Acta. 2010;411(21–22):1596–602.

    Article  CAS  PubMed  Google Scholar 

  3. Fryer AA, Smellie WS. Managing demand for laboratory tests: a laboratory toolkit. J Clin Pathol. 2013;66(1):62–72.

    Article  PubMed  Google Scholar 

  4. Kale MS, Bishop TF, Federman AD, Keyhani S. “Top 5” lists top $5 billion. Arch Intern Med. 2011;171(20):1856–8.

    Article  PubMed  Google Scholar 

  5. Procop GW, Keating C, Stagno P, Kottke-Marchant K, Partin M, Tuttle R, et al. Reducing duplicate testing: a comparison of two clinical decision support tools. Am J Clin Pathol. 2015;143(5):623–6.

    Article  PubMed  Google Scholar 

  6. Malone B. How can labs tackle utilization of high-volume, low-cost tests? AACC; 2013 [cited 12 July 2015]. https://www.aacc.org/publications/cln/articles/2013/september/daily-blood.

  7. Thakkar RN, Kim D, Knight AM, Riedel S, Vaidya D, Wright SM. Impact of an educational intervention on the frequency of daily blood test orders for hospitalized patients. Am J Clin Pathol. 2015;143(3):393–7.

    Article  PubMed  Google Scholar 

  8. Lyon AW, Chin AC, Slotsve GA, Lyon ME. Simulation of repetitive diagnostic blood loss and onset of iatrogenic anemia in critical care patients with a mathematical model. Comput Biol Med. 2013;43(2):84–90.

    Article  PubMed  Google Scholar 

  9. Thavendiranathan P, Bagai A, Ebidia A, Detsky AS, Choudhry NK. Do blood tests cause anemia in hospitalized patients? The effect of diagnostic phlebotomy on hemoglobin and hematocrit levels. J Gen Intern Med. 2005;20(6):520–4.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang TJ, Mort EA, Nordberg P, Chang Y, Cadigan ME, Mylott L, et al. A utilization management intervention to reduce unnecessary testing in the coronary care unit. Arch Intern Med. 2002;162(16):1885–90.

    Article  PubMed  Google Scholar 

  11. Neilson EG, Johnson KB, Rosenbloom ST, Dupont WD, Talbert D, Giuse DA, et al. The impact of peer management on test-ordering behavior. Ann Intern Med. 2004;141(3):196–204.

    Article  PubMed  Google Scholar 

  12. Wilson ML. Decreasing inappropriate laboratory test utilization: controlling costs and improving quality of care. Am J Clin Pathol. 2015;143(5):614–6.

    Article  PubMed  Google Scholar 

  13. Kumwilaisak K, Noto A, Schmidt UH, Beck CI, Crimi C, Lewandrowski K, et al. Effect of laboratory testing guidelines on the utilization of tests and order entries in a surgical intensive care unit. Crit Care Med. 2008;36(11):2993–9.

    Article  PubMed  Google Scholar 

  14. May TA, Clancy M, Critchfield J, Ebeling F, Enriquez A, Gallagher C, et al. Reducing unnecessary inpatient laboratory testing in a teaching hospital. Am J Clin Pathol. 2006;126(2):200–6.

    Article  PubMed  Google Scholar 

  15. Sponsler KC, Keriwala DV, Flemmons KD, Szentirmai E, Kapp ME, Iams WT, et al. Reduction of daily lab testing among general medicine services is associated with significant cost savings and lab free days. 2015. http://www.shmabstracts.com/abstract/reduction-of-daily-lab-testing-among-general-medicine-services-is-associated-with-significant-cost-savings-and-lab-free-days/.

  16. Gama R, Nightingale PG, Broughton PM, Peters M, Ratcliffe JG, Bradby GV, et al. Modifying the request behaviour of clinicians. J Clin Pathol. 1992;45(3):248–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bareford D, Hayling A. Inappropriate use of laboratory services: long term combined approach to modify request patterns. BMJ. 1990;301(6764):1305–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miyakis S, Karamanof G, Liontos M, Mountokalakis TD. Factors contributing to inappropriate ordering of tests in an academic medical department and the effect of an educational feedback strategy. Postgrad Med J. 2006;82(974):823–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Calderon-Margalit R, Mor-Yosef S, Mayer M, Adler B, Shapira SC. An administrative intervention to improve the utilization of laboratory tests within a university hospital. Int J Qual Health Care. 2005;17(3):243–8.

    Article  PubMed  Google Scholar 

  20. Feldman LS, Shihab HM, Thiemann D, Yeh HC, Ardolino M, Mandell S, et al. Impact of providing fee data on laboratory test ordering: a controlled clinical trial. JAMA Intern Med. 2013;173(10):903–8.

    Article  PubMed  Google Scholar 

  21. Stuebing EA, Miner TJ. Surgical vampires and rising health care expenditure: reducing the cost of daily phlebotomy. Arch Surg (Chicago, IL: 1960). 2011;146(5):524–7.

    Google Scholar 

  22. Pageler NM, Franzon D, Longhurst CA, Wood M, Shin AY, Adams ES, et al. Embedding time-limited laboratory orders within computerized provider order entry reduces laboratory utilization. Pediatr Crit Care Med. 2013;14(4):413–9.

    Article  PubMed  Google Scholar 

  23. Ioulia I, Hayley M, Tara C, Georgia G, Neda A, Nazli B, et al. Implementation of an on-demand strategy for routine blood testing in ICU patients. D23 QUALITY IMPROVEMENT IN CRITICAL CARE. American Thoracic Society International Conference Abstracts: American Thoracic Society. 2013; A5322–A.

    Google Scholar 

  24. American Board of Internal Medicine. Choosing wisely campaign. http://www.choosingwisely.org/.

  25. Kumar A, Srivastava U. Role of routine laboratory investigations in preoperative evaluation. J Anaesthesiol Clin Pharmacol. 2011;27(2):174–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Benarroch-Gampel J, Riall TS. What laboratory tests are required for ambulatory surgery? Adv Surg. 2013;47:81–98.

    Article  PubMed  Google Scholar 

  27. Richman DC. Ambulatory surgery: how much testing do we need? Anesthesiol Clin. 2010;28(2):185–97.

    Article  PubMed  Google Scholar 

  28. Soares Dde S, Brandao RR, Mourao MR, Azevedo VL, Figueiredo AV, Trindade ES. Relevance of routine testing in low-risk patients undergoing minor and medium surgical procedures. Braz J Anesthesiol. 2013;63(2):197–201.

    Article  PubMed  Google Scholar 

  29. Seicean A, Schiltz NK, Seicean S, Alan N, Neuhauser D, Weil RJ. Use and utility of preoperative hemostatic screening and patient history in adult neurosurgical patients. J Neurosurg. 2012;116(5):1097–105.

    Article  PubMed  Google Scholar 

  30. Benarroch-Gampel J, Sheffield KM, Duncan CB, Brown KM, Han Y, Townsend Jr CM, et al. Preoperative laboratory testing in patients undergoing elective, low-risk ambulatory surgery. Ann Surg. 2012;256(3):518–28.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Olson RP, Stone A, Lubarsky D. The prevalence and significance of low preoperative hemoglobin in ASA 1 or 2 outpatient surgery candidates. Anesth Analg. 2005;101(5):1337–40.

    Article  CAS  PubMed  Google Scholar 

  32. Rai AT, Domico J. Routine pre-procedure laboratory testing for patients undergoing outpatient cerebral angiography is not indicated. J Neurointerv Surg. 2013;5(2):172–6.

    Article  PubMed  Google Scholar 

  33. Almesbah F, Mandiwanza T, Kaliaperumal C, Caird J, Crimmins D. Routine preoperative blood testing in pediatric neurosurgery. J Neurosurg Pediatr. 2013;12(6):615–21.

    Article  PubMed  Google Scholar 

  34. Bhasin N, Parker RI. Diagnostic outcome of preoperative coagulation testing in children. Pediatr Hematol Oncol. 2014;31(5):458–66.

    Article  CAS  PubMed  Google Scholar 

  35. Fowler A, Perry DJ. Laboratory monitoring of haemostasis. Anaesthesia. 2015;70 Suppl 1:68–72, e24.

    Google Scholar 

  36. Fischer JP, Shang EK, Nelson JA, Wu LC, Serletti JM, Kovach SJ. Patterns of preoperative laboratory testing in patients undergoing outpatient plastic surgery procedures. Aesthet Surg J. 2014;34(1):133–41.

    Article  PubMed  Google Scholar 

  37. Samkova A, Blatny J, Fiamoli V, Dulicek P, Parizkova E. Significance and causes of abnormal preoperative coagulation test results in children. Haemophilia. 2012;18(3):e297–301.

    Article  CAS  PubMed  Google Scholar 

  38. American Society of Anesthesiologists Task Force on Preanesthesia Evaluation. Practice advisory for preanesthesia evaluation: a report by the American Society of Anesthesiologists Task Force on Preanesthesia Evaluation. Anesthesiology. 2002;96(2):485–96.

    Article  Google Scholar 

  39. Apfelbaum JL, Connis RT, Nickinovich DG, Pasternak LR, Arens JF, Caplan RA, et al. Practice advisory for preanesthesia evaluation: an updated report by the American Society of Anesthesiologists Task Force on Preanesthesia Evaluation. Anesthesiology. 2012;116(3):522–38.

    Article  PubMed  Google Scholar 

  40. Feely MA, Collins CS, Daniels PR, Kebede EB, Jatoi A, Mauck KF. Preoperative testing before noncardiac surgery: guidelines and recommendations. Am Fam Physician. 2013;87(6):414–8.

    PubMed  Google Scholar 

  41. Salinas M, Lopez-Garrigos M, Flores E, Uris J, Leiva-Salinas C. Potential over request in anemia laboratory tests in primary care in Spain. Hematology. 2015;20(6):368–73.

    Article  PubMed  Google Scholar 

  42. Kiechle FL, Arcenas RC, Rogers LC. Establishing benchmarks and metrics for disruptive technologies, inappropriate and obsolete tests in the clinical laboratory. Clin Chim Acta. 2014;427:131–6.

    Article  CAS  PubMed  Google Scholar 

  43. van Walraven C, Goel V, Chan B. Effect of population-based interventions on laboratory utilization: a time-series analysis. JAMA. 1998;280(23):2028–33.

    Article  PubMed  Google Scholar 

  44. Crider KS, Bailey LB, Berry RJ. Folic acid food fortification-its history, effect, concerns, and future directions. Nutrients. 2011;3(3):370–84.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Carmel R. Megaloblastic anemias: disorders of impaired DNA synthesis. In: Greer J, Arber D, Bertil G, List A, Means R, Paraskevas F, et al., editors. Wintrobe’s clinical hematology. Philadelphia: Lippincott Williams & Wilkins; 2014. p. 927–53.

    Google Scholar 

  46. Theisen-Toupal J, Horowitz GL, Breu AC. Utility, charge, and cost of inpatient and emergency department serum folate testing. J Hosp Med. 2013;8(2):91–5.

    Article  PubMed  Google Scholar 

  47. Ganiyu-Dada Z, Bowcock S. Repeat haematinic requests in patients with previous normal results: the scale of the problem in elderly patients at a district general hospital. Int J Lab Hematol. 2011;33(6):610–3.

    Article  CAS  PubMed  Google Scholar 

  48. Kahan NR, Waitman DA, Vardy DA. Curtailing laboratory test ordering in a managed care setting through redesign of a computerized order form. Am J Manag Care. 2009;15(3):173–6.

    PubMed  Google Scholar 

  49. Depoorter M, Goletti S, Latinne D, Defour J. Optimal flagging combinations for best performance of five blood cell analyzers. Int J Lab Hematol. 2015;37(1):63–70.

    Article  CAS  PubMed  Google Scholar 

  50. Seo JY, Lee ST, Kim SH. Performance evaluation of the new hematology analyzer Sysmex XN-series. Int J Lab Hematol. 2015;37(2):155–64.

    Article  CAS  PubMed  Google Scholar 

  51. Kratz A, Bengtsson HI, Casey JE, Keefe JM, Beatrice GH, Grzybek DY, et al. Performance evaluation of the CellaVision DM96 system: WBC differentials by automated digital image analysis supported by an artificial neural network. Am J Clin Pathol. 2005;124(5):770–81.

    Article  PubMed  Google Scholar 

  52. Bruegel M, Nagel D, Funk M, Fuhrmann P, Zander J, Teupser D. Comparison of five automated hematology analyzers in a university hospital setting: Abbott Cell-Dyn Sapphire, Beckman Coulter DxH 800, Siemens Advia 2120i, Sysmex XE-5000, and Sysmex XN-2000. Clin Chem Lab Med. 2015;53(7):1057–71.

    Article  CAS  PubMed  Google Scholar 

  53. Barnes PW, McFadden SL, Machin SJ, Simson E. The international consensus group for hematology review: suggested criteria for action following automated CBC and WBC differential analysis. Lab Hematol. 2005;11(2):83–90.

    Article  CAS  PubMed  Google Scholar 

  54. Koepke JA, Assendelft OWV, Brindza LJ, Davis BH, Fernandes BJ, Gewirtz AS, et al. H20-A2. Reference leukocyte (WBC) differential count (proportional) and evaluation of instrumental methods; approved standard—second edition, vol. 27(4). Clinical and Laboratory Standards Institute; 2007.

    Google Scholar 

  55. Rabinovitch A, Barnes P, Curcio KM, Dorman J, Huisman A, Nguyen L, et al. H26-A2. Validation, verification, and quality assurance of automated hematology analyzers; approved standard—second edition, vol. 30(14). Clinical and Laboratory Standards Institute; 2010.

    Google Scholar 

  56. Hotton J, Broothaers J, Swaelens C, Cantinieaux B. Performance and abnormal cell flagging comparisons of three automated blood cell counters: Cell-Dyn Sapphire, DxH-800, and XN-2000. Am J Clin Pathol. 2013;140(6):845–52.

    Article  PubMed  Google Scholar 

  57. VanVranken SJ, Patterson ES, Rudmann SV, Waller KV. A survey study of benefits and limitations of using CellaVision DM96 for peripheral blood differentials. Clin Lab Sci. 2014;27(1):32–9.

    PubMed  Google Scholar 

  58. Zaman Z. Automated urine screening devices make urine sediment microscopy in diagnostic laboratories economically viable. Clin Chem Lab Med. 2015;53 Suppl 2:s1509–11.

    CAS  PubMed  Google Scholar 

  59. Khejonnit V, Pratumvinit B, Reesukumal K, Meepanya S, Pattanavin C, Wongkrajang P. Optimal criteria for microscopic review of urinalysis following use of automated urine analyzer. Clin Chim Acta. 2015;439:1–4.

    Article  CAS  PubMed  Google Scholar 

  60. Du J, Xu J, Wang F, Guo Y, Zhang F, Wu W, et al. Establishment and development of the personalized criteria for microscopic review following multiple automated routine urinalysis systems. Clin Chim Acta. 2015;444:221–8.

    Article  CAS  PubMed  Google Scholar 

  61. Okada H, Sakai Y, Miyazaki S, Arakawa S, Hamaguchi Y, Kamidono S. Detection of significant bacteriuria by automated urinalysis using flow cytometry. J Clin Microbiol. 2000;38(8):2870–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kayalp D, Dogan K, Ceylan G, Senes M, Yucel D. Can routine automated urinalysis reduce culture requests? Clin Biochem. 2013;46(13–14):1285–9.

    Article  PubMed  Google Scholar 

  63. Sterry-Blunt RE, Randall K, Doughton M, Aliyu S, Enoch D. Screening urine samples for the absence of urinary tract infection using the sediMAX automated microscopy analyser. J Med Microbiol. 2015;64(6):605–9.

    Article  PubMed  Google Scholar 

  64. Luciano R, Piga S, Federico L, Argentieri M, Fina F, Cuttini M, et al. Development of a score based on urinalysis to improve the management of urinary tract infection in children. Clin Chim Acta. 2012;413(3–4):478–82.

    Article  CAS  PubMed  Google Scholar 

  65. Sharda N, Bakhtar O, Thajudeen B, Meister E, Szerlip H. Manual urine microscopy versus automated urine analyzer microscopy in patients with acute kidney injury. Lab Med. 2014;45(4):e152–5.

    Article  PubMed  Google Scholar 

  66. Lamchiagdhase P, Preechaborisutkul K, Lomsomboon P, Srisuchart P, Tantiniti P, Khan-u-Ra N, et al. Urine sediment examination: a comparison between the manual method and the iQ200 automated urine microscopy analyzer. Clin Chim Acta. 2005;358(1–2):167–74.

    Article  CAS  PubMed  Google Scholar 

  67. Djulbegovic B, Hadley T, Pasic R. A new algorithm for diagnosis of anemia. Postgrad Med. 1989;85(5):119–22, 127–30.

    Google Scholar 

  68. Killip S, Bennett JM, Chambers MD. Iron deficiency anemia. Am Fam Physician. 2007;75(5):671–8.

    PubMed  Google Scholar 

  69. Kline NE. A practical approach to the child with anemia. J Pediatr Health Care. 1996;10(3):99–105.

    Article  CAS  PubMed  Google Scholar 

  70. Means R, Glader B. Anemia: general considerations. In: Greer J, Arber D, Bertil G, List A, Means R, Paraskevas F, et al., editors. Wintrobe’s clinical hematology. Philadelphia: Lippincott Williams & Wilkins; 2014. p. 587–616.

    Google Scholar 

  71. Haq SM. Anemia analyzer: algorithm and reflex testing in clinical practice leading to efficiency and cost savings. Stud Health Technol Inform. 2009;143:14–6.

    PubMed  Google Scholar 

  72. Wu AH. Reflex testing III: efficient use of laboratory markers for anemia. Clin Chim Acta. 2004;343(1–2):241–3.

    Article  CAS  PubMed  Google Scholar 

  73. Mahe ER, Higa D, Naugler C, Mansoor A, Shabani-Rad MT. Accuracy of the CellaVision DM96 platform for reticulocyte counting. J Pathol Inform. 2014;5:17.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Horn CL, Mansoor A, Wood B, Nelson H, Higa D, Lee LH, et al. Performance of the CellaVision(®) DM96 system for detecting red blood cell morphologic abnormalities. J Pathol Inform. 2015;6:11.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kent Lewandrowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rudolf, J., Lewandrowski, K. (2017). Utilization Management in the Routine Hematology Laboratory. In: Lewandrowski, K., Sluss, P. (eds) Utilization Management in the Clinical Laboratory and Other Ancillary Services. Springer, Cham. https://doi.org/10.1007/978-3-319-34199-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34199-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34197-2

  • Online ISBN: 978-3-319-34199-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics