Skip to main content

Ethical Aspects of tDCS Use in Neuropsychiatry and the Risk of Misuse

  • Chapter
  • First Online:
Transcranial Direct Current Stimulation in Neuropsychiatric Disorders

Abstract

There is growing enthusiasm about the potential of tDCS to be of value to clinical treatment and cognitive enhancement in neuropsychiatry. Yet despite its promise, the use of tDCS in clinical and nonclinical contexts faces several scientific and ethical challenges, which must be considered to protect against unanticipated or even adverse effects on individuals and groups in society. Scientific challenges include the lack of precise understanding of tDCS mechanisms, the present unreliability of predictions for the magnitude and nature of an individual’s response to stimulation, the need for tDCS research to better capture dynamic effects in highly heterogeneous populations in whom comorbid diagnoses and the concurrent use of (multiple) medications may interact independently and interactively to affect tDCS response. Ethical challenges include issues of safety, character, justice, and autonomy. These considerations prompt a need to anticipate the trajectories of current and potential future use of tDCS both within and outside of clinical contexts, as there are likely to be evolving social and cultural consequences of tDCS use within neuropsychiatry. Likewise, neuroethical consequences from nonclinically oriented tDCS use are likely to have an impact on the way tDCS is used—and sought out—in clinical contexts. The accessibility of tDCS and its likelihood for broad use outside of medical contexts make it especially important to consider the promises, potential perils, and likely trajectories of tDCS use in multiple contexts from the outset. In this chapter, we reflect upon the way that the present degree of scientific understanding of tDCS motivates, justifies, and sometimes cautions against tDCS use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adee S. Trying a 9-volt shortcut to expertise. The Washington Post. Feb. 14, 2012.

    Google Scholar 

  2. Dubljević V, Saigle V, Racine E. The rising tide of tDCS in the media and academic literature. Neuron. 2014;82(4):731–6.

    Article  PubMed  CAS  Google Scholar 

  3. Sample I. Got a problem—put your electric thinking cap on. Guardian Unlimited. 2011.

    Google Scholar 

  4. Farah MJ. Neuroscience. The unknowns of cognitive enhancement. Science. 2015;350(6259):379–80.

    Article  CAS  PubMed  Google Scholar 

  5. Hamilton RH, Zreik J. Wired for thought. Sci Am. 2014;2(310):12.

    Article  Google Scholar 

  6. Galea JM, Celnik P. Brain polarization enhances the formation and retention of motor memories. J Neurophysiol. 2009;102(1):294–301.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E, et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci U S A. 2009;106(5):1590–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nikolin S, Loo CK, Bai S, Dokos S, Martin DM. Focalised stimulation using high definition transcranial direct current stimulation (HD-tDCS) to investigate declarative verbal learning and memory functioning. Neuroimage. 2015;117:11–9.

    Article  PubMed  Google Scholar 

  9. Elmer S, Burkard M, Renz B, Meyer M, Jäncke L. Direct current induced short-term modulation of the left dorsolateral prefrontal cortex while learning auditory presented nouns. Behav Brain Funct. 2009;5:29.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ouellet J, McGirr A, Van den Eynde F, Jollant F, Lepage M, Berlim MT. Enhancing decision-making and cognitive impulse control with transcranial direct current stimulation (tDCS) applied over the orbitofrontal cortex (OFC): a randomized and sham-controlled exploratory study. J Psychiatr Res. 2015;69:27–34.

    Article  PubMed  Google Scholar 

  11. Jacobson L, Javitt DC, Lavidor M. Activation of inhibition: diminishing impulsive behavior by direct current stimulation over the inferior frontal gyrus. J Cogn Neurosci. 2011;23(11):3380–7.

    Article  PubMed  Google Scholar 

  12. Pope PA, Miall RC. Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul. 2012;5(2):84–94.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pope PA, Brenton JW, Miall RC. Task-specific facilitation of cognition by anodal transcranial direct current stimulation of the prefrontal cortex. Cereb Cortex. 2015;25(11):4551–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gill J, Shah-Basak PP, Hamilton R. It’s the thought that counts: examining the task-dependent effects of transcranial direct current stimulation on executive function. Brain Stimul. 2015;8(2):253–9.

    Article  PubMed  Google Scholar 

  15. Andrews SC, Hoy KE, Enticott PG, Daskalakis ZJ, Fitzgerald PB. Improving working memory: the effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex. Brain Stimul. 2011;4(2):84–9.

    Article  PubMed  Google Scholar 

  16. Chrysikou EG, Hamilton RH, Coslett HB, Datta A, Bikson M, Thompson-Schill SL. Noninvasive transcranial direct current stimulation over the left prefrontal cortex facilitates cognitive flexibility in tool use. Cogn Neurosci. 2013;4(2):81–9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Floel A, Rösser N, Michka O, Knecht S, Breitenstein C. Noninvasive brain stimulation improves language learning. J Cogn Neurosci. 2008;20(8):1415–22.

    Article  PubMed  Google Scholar 

  18. Savill N, Ashton J, Gugliuzza J, Poole C, Sim Z, Ellis AW, et al. tDCS to temporoparietal cortex during familiarisation enhances the subsequent phonological coherence of nonwords in immediate serial recall. Cortex. 2015;63:132–44.

    Article  PubMed  Google Scholar 

  19. Turkeltaub PE, Benson J, Hamilton RH, Datta A, Bikson M, Coslett HB. Left lateralizing transcranial direct current stimulation improves reading efficiency. Brain Stimul. 2012;5(3):201–7.

    Article  PubMed  Google Scholar 

  20. McKinley RA, Bridges N, Walters CM, Nelson J. Modulating the brain at work using noninvasive transcranial stimulation. Neuroimage. 2012;59(1):129–37.

    Article  PubMed  Google Scholar 

  21. Woods AJ, Hamilton RH, Kranjec A, Minhaus P, Bikson M, Yu J, et al. Space, time, and causality in the human brain. Neuroimage. 2014;92:285–97.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Medina J, Beauvais J, Datta A, Bikson M, Coslett HB, Hamilton RH. Transcranial direct current stimulation accelerates allocentric target detection. Brain Stimul. 2013;6(3):433–9.

    Article  PubMed  Google Scholar 

  23. Knoch D, Pascual-Leone A, Meyer K, Treyer V, Fehr E. Diminishing reciprocal fairness by disrupting the right prefrontal cortex. Science. 2006;314(5800):829–32.

    Article  CAS  PubMed  Google Scholar 

  24. Nihonsugi T, Ihara A, Haruno M. Selective increase of intention-based economic decisions by noninvasive brain stimulation to the dorsolateral prefrontal cortex. J Neurosci. 2015;35(8):3412–9.

    Article  CAS  PubMed  Google Scholar 

  25. Lo YL, Fook-Chong S, Tan EK. Increased cortical excitability in human deception. NeuroReport. 2003;14(7):1021–4.

    Article  CAS  PubMed  Google Scholar 

  26. Karim AA, Schneider M, Lotze M, Veit R, Sauseng P, Braun C, et al. The truth about lying: inhibition of the anterior prefrontal cortex improves deceptive behavior. Cereb Cortex. 2010;20(1):205–13.

    Article  PubMed  Google Scholar 

  27. Priori A, Mameli F, Cogiamanian F, Marceglia S, Tiriticco M, Mrakic-Sposta S, et al. Lie-specific involvement of dorsolateral prefrontal cortex in deception. Cereb Cortex. 2008;18(2):451–5.

    Article  PubMed  Google Scholar 

  28. Dèttore D, O’Connor K. OCD and cognitive illusions. Cognit Ther Res. 2013;37:109–21.

    Article  Google Scholar 

  29. Tschacher W, Kupper Z. Perception of causality in schizophrenia spectrum disorder. Schizophr Bull. 2006;32 Suppl 1:S106–12.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Demirtas-Tatlidede A, Vahabzadeh-Hagh AM, Pascual-Leone A. Can noninvasive brain stimulation enhance cognition in neuropsychiatric disorders? Neuropharmacology. 2013;64:566–78.

    Article  CAS  PubMed  Google Scholar 

  31. George MS, Padberg F, Schlaepfer TE, O’Reardon JP, Fitzgerald PB, Nahas ZH, et al. Controversy: Repetitive transcranial magnetic stimulation or transcranial direct current stimulation shows efficacy in treating psychiatric diseases (depression, mania, schizophrenia, obsessive-complusive disorder, panic, posttraumatic stress disorder). Brain Stimul. 2009;2(1):14–21.

    Article  PubMed  Google Scholar 

  32. Luedtke K, Rushton A, Wright C, Geiss B, Juergens TP, May A. Transcranial direct current stimulation for the reduction of clinical and experimentally induced pain: a systematic review and meta-analysis. Clin J Pain. 2012;28(5):452–61.

    Article  PubMed  Google Scholar 

  33. Shiozawa P, Fregni F, Benseñor IM, Lotufo PA, Berlim MT, Daskalakis JZ, et al. Transcranial direct current stimulation for major depression: an updated systematic review and meta-analysis. Int J Neuropsychopharm. 2014;17(9):1443–52.

    Article  Google Scholar 

  34. Blumberger DM, Tran LC, Fitzgerald PB, Hoy KE, Daskalakis ZJ. A randomized double-blind sham-controlled study of transcranial direct current stimulation for treatment-resistant major depression. Front Psychiatry. 2012;3:74.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Brunoni AR, Valiengo L, Baccaro A, Zanao TA. Sertraline vs. electrical current therapy for treating depression clinical trial—SELECT TDCS: design, rationale and objectives. Contemp Clin Trials. 2011;32(1):90–8.

    Article  CAS  PubMed  Google Scholar 

  36. Brunoni AR, Ferrucci R, Bortolomasi M, Vergari M, Tadini L, Boggio PS, et al. Transcranial direct current stimulation (tDCS) in unipolar vs. bipolar depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(1):96–101.

    Article  CAS  PubMed  Google Scholar 

  37. Ferrucci R, Bortolomasi M, Vergari M, Tadini L, Salvoro B, Giacopuzzi M, et al. Transcranial direct current stimulation in severe, drug-resistant major depression. J Affect Disord. 2009;118(1–3):215–9.

    Article  CAS  PubMed  Google Scholar 

  38. Fregni F, Boggio PS, Nitsche MA, Rigonatti SP, Pascual-Leone A. Cognitive effects of repeated sessions of transcranial direct current stimulation in patients with depression. Depress Anxiety. 2006;23(8):482–4.

    Article  PubMed  Google Scholar 

  39. Loo C, Martin D, Pigot M, Arul-Anandam P, Mitchell P, Sachdev P. Transcranial direct current stimulation priming of therapeutic repetitive transcranial magnetic stimulation: a pilot study. J ECT. 2009;25(4):256–60.

    Article  PubMed  Google Scholar 

  40. Rigonatti SP, Boggio PS, Myczkowski ML, Otta E, Fiquer JT, Ribeiro RB, et al. Transcranial direct stimulation and fluoxetine for the treatment of depression. Eur Psychiatry. 2008;23(1):74–6.

    Article  PubMed  Google Scholar 

  41. Valiengo L, Benseñor IM, Goulart AC, de Oliveira JF, Zanao TA, Boggio PS, et al. The sertraline versus electrical current therapy for treating depression clinical study (select-TDCS): results of the crossover and follow-up phases. Depress Anxiety. 2013;30(7):646–53.

    Article  CAS  PubMed  Google Scholar 

  42. Hazime FA, de Freitas DG, Monteiro RL, Maretto RL, Carvalho NA, Hasue RH, et al. Analgesic efficacy of cerebral and peripheral electrical stimulation in chronic nonspecific low back pain: a randomized, double-blind, factorial clinical trial. BMC Musculoskelet Disord. 2015;16:7.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Luedtke K, Rushton A, Wright C, Juergens TP, Mueller G, May A. Effectiveness of anodal transcranial direct current stimulation in patients with chronic low back pain: design, method and protocol for a randomised controlled trial. BMC Musculoskelet Disord. 2011;12:290.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Concerto C, Al Sawah M, Chusid E, Trepal M, Taylor G, Aguglia E, et al. Anodal transcranial direct current stimulation for chronic pain in the elderly: a pilot study. Aging Clin Exp Res. 2015;28(2):231–7.

    Article  PubMed  Google Scholar 

  45. Brandão Filho RA, Baptista AF, Brandão Rde A, Meneses FM, Okeson J, de Sena EP. Analgesic effect of cathodal transcranial current stimulation over right dorsolateral prefrontal cortex in subjects with muscular temporomandibular disorders: study protocol for a randomized controlled trial. Trials. 2015;16(1):415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Oliveira LB, Lopes TS, Soares C, Maluf R, Goes BT, Sá KN, et al. Transcranial direct current stimulation and exercises for treatment of chronic temporomandibular disorders: a blind randomised-controlled trial. J Oral Rehabil. 2015;42(10):723–32.

    Article  CAS  PubMed  Google Scholar 

  47. Volz MS, Farmer A, Siegmund B. Reduction of chronic abdominal pain in patients with inflammatory bowel disease via transcranial direct current stimulation: a randomized controlled trial. Pain. 2015;157(2):429–37.

    Article  Google Scholar 

  48. O’Neill F, Sacco P, Nurmikko T. Evaluation of a home-based transcranial direct current stimulation (tDCS) treatment device for chronic pain: study protocol for a randomised controlled trial. Trials. 2015;16:186.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Castillo Saavedra L, Gebodh N, Bikson M, Diaz-Cruz C, Brandao R, Coutinho L, et al. Clinically effective treatment of fibromyalgia pain with HD-tDCS—phase II open-label dose-optimization. J Pain. 2015;17(1):14–26.

    Article  PubMed  Google Scholar 

  50. Fregni F, Gimenes R, Valle AC, Ferreira MJL, Rocha RR, Natalle L, et al. A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum. 2006;54(12):3988–98.

    Article  PubMed  Google Scholar 

  51. Mori F, Codecà C, Kusayanagi H, Monteleone F, Buttari F, Fiore S, et al. Effects of anodal transcranial direct current stimulation on chronic neuropathic pain in patients with multiple sclerosis. J Pain. 2010;11(5):436–42.

    Article  PubMed  Google Scholar 

  52. Soler MD, Kumru H, Pelayo R, Vidal J, Tormos JM, Fregni F, et al. Effectiveness of transcranial direct current stimulation and visual illusion on neuropathic pain in spinal cord injury. Brain. 2010;133(9):2565–77.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Morishita T, Hyakutake K, Saita K, Takahara M, Shiota E, Inoue T. Pain reduction associated with improved functional interhemispheric balance following transcranial direct current stimulation for post-stroke central pain: a case study. J Neurol Sci. 2015;358(1–2):484–5.

    Article  PubMed  Google Scholar 

  54. O’Connell NE, Wand BM. Transcranial direct current brain stimulation for chronic pain. BMJ. 2015;350:h1774.

    Article  PubMed  Google Scholar 

  55. Angius L, Hopker JG, Marcora SM, Mauger AR. The effect of transcranial direct current stimulation of the motor cortex on exercise-induced pain. Eur J Appl Physiol. 2015;115(11):2311–9.

    Article  PubMed  Google Scholar 

  56. Bocci T, Santarcangelo E, Vannini B, Torzini A, Carli G, Ferrucci R, et al. Cerebellar direct current stimulation modulates pain perception in humans. Restor Neurol Neurosci. 2015;33(5):597–609.

    Article  PubMed  Google Scholar 

  57. Boggio PS, Zaghi S, Fregni F. Modulation of emotions associated with images of human pain using anodal transcranial direct current stimulation (tDCS). Neuropsychologia. 2009;47(1):212–7.

    Article  PubMed  Google Scholar 

  58. Boggio PS, Zaghi S, Lopes M, Fregni F. Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers. Eur J Neurol. 2008;15(10):1124–30.

    Article  CAS  PubMed  Google Scholar 

  59. Ihle K, Rodriguez-Raecke R, Luedtke K, May A. tDCS modulates cortical nociceptive processing but has little to no impact on pain perception. Pain. 2014;155(10):2080–7.

    Article  PubMed  Google Scholar 

  60. Cosmo C, Baptista AF, de Araújo AN, do Rosário RS, Miranda JGV, Montoya P, et al. A randomized, double-blind, sham-controlled trial of transcranial direct current stimulation in attention-deficit/hyperactivity disorder. PLoS One. 2015;10(8):e0135371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Fitzgerald PB, McQueen S, Daskalakis ZJ, Hoy KE. A negative pilot study of daily bimodal transcranial direct current stimulation in schizophrenia. Brain Stimul. 2014;7(6):813–6.

    Article  PubMed  Google Scholar 

  62. Hasan A, Aborowa R, Nitsche MA, Marshall L, Schmitt A, Gruber O, et al. Abnormal bihemispheric responses in schizophrenia patients following cathodal transcranial direct stimulation. Eur Arch Psychiatry Clin Neurosci. 2012;262(5):415–23.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hoy KE, Arnold SL, Emonson MRL, Daskalakis ZJ, Fitzgerald PB. An investigation into the effects of tDCS dose on cognitive performance over time in patients with schizophrenia. Schizophr Res. 2014;155(1–3):96–100.

    Article  PubMed  Google Scholar 

  64. Schretlen DJ, van Steenburgh JJ, Varvaris M, Vannorsdall TD, Andrejczuk MA, Gordon B. Can transcranial direct current stimulation improve cognitive functioning in adults with schizophrenia? Clin Schizophr Relat Psychoses. 2014;1–27.

    Google Scholar 

  65. Strube W, Bunse T, Nitsche MA, Wobrock T, Aborowa R, Misewitsch K, et al. Smoking restores impaired LTD-like plasticity in schizophrenia: a transcranial direct current stimulation study. Neuropsychopharmacology. 2015;40(4):822–30.

    Article  CAS  PubMed  Google Scholar 

  66. Boggio PS, Ferrucci R, Mameli F, Martins D, Martins O, Vergari M, et al. Prolonged visual memory enhancement after direct current stimulation in Alzheimer’s disease. Brain Stimul. 2012;5(3):223–30.

    Article  PubMed  Google Scholar 

  67. Meinzer M, Lindenberg R, Phan MT, Ulm L, Volk C, Floel A. Transcranial direct current stimulation in mild cognitive impairment: behavioral effects and neural mechanisms. Alzheimers Dement. 2015;11(9):1032–40.

    Article  PubMed  Google Scholar 

  68. Faber M, Vanneste S, Fregni F, De Ridder D. Top down prefrontal affective modulation of tinnitus with multiple sessions of tDCS of dorsolateral prefrontal cortex. Brain Stimul. 2012;5(4):492–8.

    Article  PubMed  Google Scholar 

  69. Volpato C, Piccione F, Cavinato M, Duzzi D, Schiff S, Foscolo L, et al. Modulation of affective symptoms and resting state activity by brain stimulation in a treatment-resistant case of obsessive-compulsive disorder. Neurocase. 2013;19(4):360–70.

    Article  CAS  PubMed  Google Scholar 

  70. Shiozawa P, Leiva APG, Castro CDC, da Silva ME, Cordeiro Q, Fregni F, et al. Transcranial direct current stimulation for generalized anxiety disorder: a case study. Biol Psychiatry. 2014;75(11):e17–8.

    Article  PubMed  Google Scholar 

  71. Marin M-F, Camprodon JA, Dougherty DD, Milad MR. Device-based brain stimulation to augment fear extinction: implications for PTSD treatment and beyond. Depress Anxiety. 2014;31(4):269–78.

    Article  PubMed  Google Scholar 

  72. Heeren A, Baeken C, Vanderhasselt M-A, Philippot P, de Raedt R. Impact of anodal and cathodal transcranial direct current stimulation over the left dorsolateral prefrontal cortex during attention bias modification: an eye-tracking study. PLoS One. 2015;10(4):e0124182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Ironside M, O’Shea J, Cowen PJ, Harmer CJ. Frontal cortex stimulation reduces vigilance to threat: implications for the treatment of depression and anxiety. Biol Psychiatry. 2015;79(10):823–30.

    Article  PubMed  Google Scholar 

  74. Fecteau S, Knoch D, Fregni F, Sultani N, Boggio P, Pascual-Leone A. Diminishing risk-taking behavior by modulating activity in the prefrontal cortex: a direct current stimulation study. J Neurosci. 2007;27(46):12500–5.

    Article  CAS  PubMed  Google Scholar 

  75. Pripfl J, Neumann R, Köhler U, Lamm C. Effects of transcranial direct current stimulation on risky decision making are mediated by ‘hot’ and ‘cold’ decisions, personality, and hemisphere. Eur J Neurosci. 2013;38(12):3778–85.

    Article  PubMed  Google Scholar 

  76. Fecteau S, Agosta S, Hone-Blanchet A, Fregni F, Boggio P, Ciraulo D, et al. Modulation of smoking and decision-making behaviors with transcranial direct current stimulation in tobacco smokers: a preliminary study. Drug Alcohol Depend. 2014;140:78–84.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Fraser PE, Rosen AC. Transcranial direct current stimulation and behavioral models of smoking addiction. Front Psychiatry. 2012;3:79.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Fregni F, Liguori P, Fecteau S, Nitsche MA, Pascual-Leone A, Boggio PS. Cortical stimulation of the prefrontal cortex with transcranial direct current stimulation reduces cue-provoked smoking craving: a randomized, sham-controlled study. J Clin Psychiatry. 2008;69(1):32–40.

    Article  PubMed  Google Scholar 

  79. Grundey J, Thirugnanasambandam N, Kaminsky K, Drees A, Skwirba AC, Lang N, et al. Neuroplasticity in cigarette smokers is altered under withdrawal and partially restituted by nicotine exposition. J Neurosci. 2012;32(12):4156–62.

    Article  CAS  PubMed  Google Scholar 

  80. Meng Z, Liu C, Yu C, Ma Y. Transcranial direct current stimulation of the frontal-parietal-temporal area attenuates smoking behavior. J Psychiatr Res. 2014;54:19–25.

    Article  PubMed  Google Scholar 

  81. da Silva MC, Conti CL, Klauss J, Alves LG, do Nascimento Cavalcante HM, Fregni F, et al. Behavioral effects of transcranial direct current stimulation (tDCS) induced dorsolateral prefrontal cortex plasticity in alcohol dependence. J Physiol Paris. 2013;107(6):493–502.

    Article  PubMed  Google Scholar 

  82. den Uyl TE, Gladwin TE, Wiers RW. Transcranial direct current stimulation, implicit alcohol associations and craving. Biol Psychol. 2015;105:37–42.

    Article  Google Scholar 

  83. Herremans SC, Baeken C. The current perspective of neuromodulation techniques in the treatment of alcohol addiction: a systematic review. Psychiatr Danub. 2012;24 Suppl 1:S14–20.

    PubMed  Google Scholar 

  84. Klauss J, Penido Pinheiro LC, Silva Merlo BL, de Almeida Correia Santos G, Fregni F, Nitsche MA, et al. A randomized controlled trial of targeted prefrontal cortex modulation with tDCS in patients with alcohol dependence. Int J Neuropsychopharm. 2014;17(11):1793–803.

    Article  Google Scholar 

  85. Shahbabaie A, Golesorkhi M, Zamanian B, Ebrahimpoor M, Keshvari F, Nejati V, et al. State dependent effect of transcranial direct current stimulation (tDCS) on methamphetamine craving. Int J Neuropsychopharm. 2014;17(10):1591–8.

    Article  CAS  Google Scholar 

  86. Batista EK, Klauss J, Fregni F, Nitsche MA, Nakamura-Palacios EM. A randomized placebo-controlled trial of targeted prefrontal cortex modulation with bilateral tDCS in patients with crack-cocaine dependence. Int J Neuropsychopharm. 2015. doi:10.1093/ijnp/pyv066.

    Google Scholar 

  87. Conti CL, Nakamura-Palacios EM. Bilateral transcranial direct current stimulation over dorsolateral prefrontal cortex changes the drug-cued reactivity in the anterior cingulate cortex of crack-cocaine addicts. Brain Stimul. 2014;7(1):130–2.

    Article  PubMed  Google Scholar 

  88. Conti CL, Moscon JA, Fregni F, Nitsche MA, Nakamura-Palacios EM. Cognitive related electrophysiological changes induced by non-invasive cortical electrical stimulation in crack-cocaine addiction. Int J Neuropsychopharm. 2014;17(9):1465–75.

    Article  CAS  Google Scholar 

  89. Fregni F, Orsati F, Pedrosa W, Fecteau S, Tome FAM, Nitsche MA, et al. Transcranial direct current stimulation of the prefrontal cortex modulates the desire for specific foods. Appetite. 2008;51(1):34–41.

    Article  PubMed  Google Scholar 

  90. Goldman RL, Borckardt JJ, Frohman HA, O’Neil PM, Madan A, Campbell LK, et al. Prefrontal cortex transcranial direct current stimulation (tDCS) temporarily reduces food cravings and increases the self-reported ability to resist food in adults with frequent food craving. Appetite. 2011;56(3):741–6.

    Article  PubMed  Google Scholar 

  91. Kekic M, McClelland J, Campbell I, Nestler S, Rubia K, David AS, et al. The effects of prefrontal cortex transcranial direct current stimulation (tDCS) on food craving and temporal discounting in women with frequent food cravings. Appetite. 2014;78:55–62.

    Article  PubMed  Google Scholar 

  92. Lapenta OM, Sierve KD, de Macedo EC, Fregni F, Boggio PS. Transcranial direct current stimulation modulates ERP-indexed inhibitory control and reduces food consumption. Appetite. 2014;83:42–8.

    Article  PubMed  Google Scholar 

  93. Montenegro RA, Okano AH, Cunha FA, Gurgel JL, Fontes EB, Farinatti PTV. Prefrontal cortex transcranial direct current stimulation associated with aerobic exercise change aspects of appetite sensation in overweight adults. Appetite. 2012;58(1):333–8.

    Article  PubMed  Google Scholar 

  94. Jauch-Chara K, Kistenmacher A, Herzog N, Schwarz M, Schweiger U, Oltmanns KM. Repetitive electric brain stimulation reduces food intake in humans. Am J Clin Nutr. 2014;100(4):1003–9.

    Article  CAS  PubMed  Google Scholar 

  95. Butler AJ, Shuster M, O’Hara E, Hurley K, Middlebrooks D, Guilkey K. A meta-analysis of the efficacy of anodal transcranial direct current stimulation for upper limb motor recovery in stroke survivors. J Hand Ther. 2013;26(2):162–70. quiz 71.

    Article  PubMed  Google Scholar 

  96. Wu D, Qian L, Zorowitz RD, Zhang L, Qu Y, Yuan Y. Effects on decreasing upper-limb poststroke muscle tone using transcranial direct current stimulation: a randomized sham-controlled study. Arch Phys Med Rehabil. 2013;94(1):1–8.

    Article  PubMed  Google Scholar 

  97. Sunwoo H, Kim Y-H, Chang WH, Noh S, Kim E-J, Ko M-H. Effects of dual transcranial direct current stimulation on post-stroke unilateral visuospatial neglect. Neurosci Lett. 2013;554:94–8.

    Article  CAS  PubMed  Google Scholar 

  98. Làdavas E, Giulietti S, Avenanti A, Bertini C, Lorenzini E, Quinquinio C, et al. a-tDCS on the ipsilesional parietal cortex boosts the effects of prism adaptation treatment in neglect. Restor Neurol Neurosci. 2015;33(5):647–62.

    Article  PubMed  Google Scholar 

  99. Gandola M, Sedda A, Manera M, Pingue V, Salvato G, Spitoni GF, et al. Selective improvement of anosognosia for hemiplegia during transcranial direct current stimulation: a case report. Cortex. 2014;61:107–19.

    Article  PubMed  Google Scholar 

  100. Brem A-K, Unterburger E, Speight I, Jäncke L. Treatment of visuospatial neglect with biparietal tDCS and cognitive training: a single-case study. Front Syst Neurosci. 2014;8:180.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Baker JM, Rorden C, Fridriksson J. Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke. 2010;41(6):1229–36.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Floel A, Meinzer M, Kirstein R, Nijhof S, Deppe M, Knecht S, et al. Short-term anomia training and electrical brain stimulation. Stroke. 2011;42(7):2065–7.

    Article  PubMed  Google Scholar 

  103. Jung I-Y, Lim JY, Kang EK, Sohn HM, Paik N-J. The factors associated with good responses to speech therapy combined with transcranial direct current stimulation in post-stroke aphasic patients. Ann Rehabil Med. 2011;35(4):460–9.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kang EK, Kim YK, Sohn HM, Cohen LG, Paik N-J. Improved picture naming in aphasia patients treated with cathodal tDCS to inhibit the right Broca’s homologue area. Restor Neurol Neurosci. 2011;29(3):141–52.

    PubMed  PubMed Central  Google Scholar 

  105. Marangolo P, Caltagirone C. Options to enhance recovery from aphasia by means of non-invasive brain stimulation and action observation therapy. Expert Rev Neurother. 2014;14(1):75–91.

    Article  CAS  PubMed  Google Scholar 

  106. Monti A, Ferrucci R, Fumagalli M, Mameli F, Cogiamanian F, Ardolino G, et al. Transcranial direct current stimulation (tDCS) and language. J Neurol Neurosurg Psychiatry. 2013;84(8):832–42.

    Article  PubMed  Google Scholar 

  107. Polanowska KE, Lesniak MM, Seniow JB, Czepiel W, Czlonkowska A. Anodal transcranial direct current stimulation in early rehabilitation of patients with post-stroke non-fluent aphasia: a randomized, double-blind, sham-controlled pilot study. Restor Neurol Neurosci. 2013;31(6):761–71.

    PubMed  Google Scholar 

  108. Santos MD, Gagliardi RJ, Mac-Kay APMG, Boggio PS, Lianza R, Fregni F. Transcranial direct-current stimulation induced in stroke patients with aphasia: a prospective experimental cohort study. Sao Paulo Med J. 2013;131(6):422–6.

    Article  PubMed  Google Scholar 

  109. Volpato C, Cavinato M, Piccione F, Garzon M, Meneghello F, Birbaumer N. Transcranial direct current stimulation (tDCS) of Broca’s area in chronic aphasia: a controlled outcome study. Behav Brain Res. 2013;247:211–6.

    Article  PubMed  Google Scholar 

  110. You DS, Kim D-Y, Chun MH, Jung SE, Park SJ. Cathodal transcranial direct current stimulation of the right Wernicke’s area improves comprehension in subacute stroke patients. Brain Lang. 2011;119(1):1–5.

    Article  PubMed  Google Scholar 

  111. Kang EK, Baek MJ, Kim S, Paik N-J. Non-invasive cortical stimulation improves post-stroke attention decline. Restor Neurol Neurosci. 2009;27(6):645–50.

    PubMed  Google Scholar 

  112. Brambilla M, Manenti R, Ferrari C, Cotelli M. Better together: left and right hemisphere engagement to reduce age-related memory loss. Behav Brain Res. 2015;293:125–33.

    Article  PubMed  Google Scholar 

  113. Floel A, Suttorp W, Kohl O, Kürten J, Lohmann H, Breitenstein C, et al. Non-invasive brain stimulation improves object-location learning in the elderly. Neurobiol Aging. 2012;33(8):1682–9.

    Article  PubMed  Google Scholar 

  114. Learmonth G, Thut G, Benwell CSY, Harvey M. The implications of state-dependent tDCS effects in aging: behavioural response is determined by baseline performance. Neuropsychologia. 2015;74:108–19.

    Article  PubMed  Google Scholar 

  115. Prehn K, Floel A. Potentials and limits to enhance cognitive functions in healthy and pathological aging by tDCS. Front Cell Neurosci. 2015;9:355.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Levasseur-Moreau J, Fecteau S. Translational application of neuromodulation of decision-making. Brain Stimul. 2012;5(2):77–83.

    Article  PubMed  Google Scholar 

  117. Coffman BA, Clark VP, Parasuraman R. Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage. 2014;85(Pt 3):895–908.

    Article  PubMed  Google Scholar 

  118. Clark VP, Coffman BA, Mayer AR, Weisend MP, Lane TDR, Calhoun VD, et al. TDCS guided using fMRI significantly accelerates learning to identify concealed objects. Neuroimage. 2012;59(1):117–28.

    Article  PubMed  Google Scholar 

  119. Coffman BA, Trumbo MC, Flores RA, Garcia CM, van der Merwe AJ, Wassermann EM, et al. Impact of tDCS on performance and learning of target detection: interaction with stimulus characteristics and experimental design. Neuropsychologia. 2012;50(7):1594–602.

    Article  CAS  PubMed  Google Scholar 

  120. Falcone B, Coffman BA, Clark VP, Parasuraman R. Transcranial direct current stimulation augments perceptual sensitivity and 24-hour retention in a complex threat detection task. PLoS One. 2012;7(4):e34993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nelson JT, McKinley RA, Golob EJ, Warm JS, Parasuraman R. Enhancing vigilance in operators with prefrontal cortex transcranial direct current stimulation (tDCS). Neuroimage. 2014;85(Pt 3):909–17.

    Article  PubMed  Google Scholar 

  122. Scheldrup M, Greenwood PM, McKendrick R, Strohl J, Bikson M, Alam M, et al. Transcranial direct current stimulation facilitates cognitive multi-task performance differentially depending on anode location and subtask. Front Hum Neurosci. 2014;8:665.

    Article  PubMed  PubMed Central  Google Scholar 

  123. McKinley RA, McIntire L, Bridges N, Goodyear C, Bangera NB, Weisend MP. Acceleration of image analyst training with transcranial direct current stimulation. Behav Neurosci. 2013;127(6):936–46.

    Article  PubMed  Google Scholar 

  124. Nelson JT, Tepe V. Neuromodulation research and application in the U.S. Department of Defense. Brain Stimul. 2015;8(2):247–52.

    Article  PubMed  Google Scholar 

  125. Fitz NS, Reiner PB. The challenge of crafting policy for do-it-yourself brain stimulation. J Med Ethics. 2015;41(5):410–2.

    Article  PubMed  Google Scholar 

  126. Wexler A. The practices of do-it-yourself brain stimulation: implications for ethical considerations and regulatory proposals. J Med Ethics. 2015;42(4):211–5.

    Article  PubMed  Google Scholar 

  127. Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche MA. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol. 2013;591(Pt 7):1987–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Monte-Silva K, Kuo M-F, Hessenthaler S, Fresnoza S, Liebetanz D, Paulus W, et al. Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimul. 2013;6(3):424–32.

    Article  PubMed  Google Scholar 

  129. Teo F, Hoy KE, Daskalakis ZJ, Fitzgerald PB. Investigating the role of current strength in tDCS modulation of working memory performance in healthy controls. Front Psychiatry. 2011;2:45.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Moliadze V, Antal A, Paulus W. Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clin Neurophysiol. 2010;121(12):2165–71.

    Article  PubMed  Google Scholar 

  131. Nitsche MA, Doemkes S, Karaköse T, Antal A, Liebetanz D, Lang N, et al. Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol. 2007;97(4):3109–17.

    Article  CAS  PubMed  Google Scholar 

  132. Datta A, Truong D, Minhas P, Parra LC, Bikson M. Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models. Front Psychiatry. 2012;3:91.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Wagner T, Fregni F, Fecteau S, Grodzinsky A, Zahn M, Pascual-Leone A. Transcranial direct current stimulation: a computer-based human model study. Neuroimage. 2007;35(3):1113–24.

    Article  PubMed  Google Scholar 

  134. Ruffini G, Fox MD, Ripolles O, Miranda PC, Pascual-Leone A. Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields. Neuroimage. 2014;89:216–25.

    Article  PubMed  Google Scholar 

  135. Chaieb L, Antal A, Terney D, Paulus W. Pharmacological modulation of the short-lasting effects of antagonistic direct current-stimulation over the human motor cortex. Front Psychiatry. 2012;3:67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Monte-Silva K, Kuo M-F, Thirugnanasambandam N, Liebetanz D, Paulus W, Nitsche MA. Dose-dependent inverted U-shaped effect of dopamine (D2-like) receptor activation on focal and nonfocal plasticity in humans. J Neurosci. 2009;29(19):6124–31.

    Article  CAS  PubMed  Google Scholar 

  137. Nitsche MA, Lampe C, Antal A, Liebetanz D, Lang N, Tergau F, et al. Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex. Eur J Neurosci. 2006;23(6):1651–7.

    Article  PubMed  Google Scholar 

  138. Brunoni AR, Ferrucci R, Bortolomasi M, Scelzo E, Boggio PS, Fregni F, et al. Interactions between transcranial direct current stimulation (tDCS) and pharmacological interventions in the Major Depressive Episode: findings from a naturalistic study. Eur Psychiatry. 2013;28(6):356–61.

    Article  CAS  PubMed  Google Scholar 

  139. Arul-Anandam AP, Loo C, Mitchell P. Induction of hypomanic episode with transcranial direct current stimulation. J ECT. 2010;26(1):68–9.

    Article  PubMed  Google Scholar 

  140. Gálvez V, Alonzo A, Martin D, Mitchell PB, Sachdev P, Loo CK. Hypomania induction in a patient with bipolar II disorder by transcranial direct current stimulation (tDCS). J ECT. 2011;27(3):256–8.

    Article  PubMed  Google Scholar 

  141. Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L, et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 2012;5(3):175–95.

    Article  PubMed  Google Scholar 

  142. Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull. 2007;72(4–6):208–14.

    Article  PubMed  Google Scholar 

  143. Frank E, Wilfurth S, Landgrebe M, Eichhammer P, Hajak G, Langguth B. Anodal skin lesions after treatment with transcranial direct current stimulation. Brain Stimul. 2010;3(1):58–9.

    Article  PubMed  Google Scholar 

  144. Loo CK, Martin DM, Alonzo A, Gandevia S, Mitchell PB, Sachdev P. Avoiding skin burns with transcranial direct current stimulation: preliminary considerations. Int J Neuropsychopharmacol. 2011;14(3):425–6.

    Article  CAS  PubMed  Google Scholar 

  145. Shiozawa P, da Silva ME, Raza R, Uchida RR, Cordeiro Q, Fregni F, et al. Safety of repeated transcranial direct current stimulation in impaired skin: a case report. J ECT. 2013;29(2):147–8.

    Article  PubMed  Google Scholar 

  146. Kuersten A, Hamilton RH. The brain, cognitive enhancement devices, and European regulation. J Law Biosci. 2014;1(3):340–7.

    Article  Google Scholar 

  147. Maslen H, Douglas T, Kadosh RC, Levy N, Savulescu J. The regulation of cognitive enhancement devices: extending the medical model. J Law Biosci. 2014;1(1):68–93.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Iuculano T, Cohen Kadosh R. The mental cost of cognitive enhancement. J Neurosci. 2013;33(10):4482–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sarkar A, Dowker A, Cohen Kadosh R. Cognitive enhancement or cognitive cost: trait-specific outcomes of brain stimulation in the case of mathematics anxiety. J Neurosci. 2014;34(50):16605–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Benwell CSY, Learmonth G, Miniussi C, Harvey M. Non-linear effects of transcranial direct current stimulation as a function of individual baseline performance: evidence from biparietal tDCS influence on lateralized attention bias. Cortex. 2015;69:152–65.

    Article  PubMed  Google Scholar 

  151. Berryhill ME, Jones KT. tDCS selectively improves working memory in older adults with more education. Neurosci Lett. 2012;521(2):148–51.

    Article  CAS  PubMed  Google Scholar 

  152. Dockery CA, Hueckel-Weng R, Birbaumer N, Plewnia C. Enhancement of planning ability by transcranial direct current stimulation. J Neurosci. 2009;29(22):7271–7.

    Article  CAS  PubMed  Google Scholar 

  153. Sellers KK, Mellin JM, Lustenberger CM, Boyle MR, Lee WH, Peterchev AV, et al. Transcranial direct current stimulation (tDCS) of frontal cortex decreases performance on the WAIS-IV intelligence test. Behav Brain Res. 2015;290:32–44.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Hamilton R, Messing S, Chatterjee A. Rethinking the thinking cap: ethics of neural enhancement using noninvasive brain stimulation. Neurology. 2011;76(2):187–93.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Cabrera LY, Evans EL, Hamilton RH. Ethics of the electrified mind: defining issues and perspectives on the principled use of brain stimulation in medical research and clinical care. Brain Topogr. 2014;27(1):33–45.

    Article  PubMed  Google Scholar 

  156. Pascual-Leone A, Fregni F, Steven MS, Forrow L. Noninvasive Brain Stimulation as a Therapeutic and Investigative Tool: An Ethical Appraisal. In:In: Illes J, Sahakian BJ, editors. Oxford Handbook of Neuroethics. Oxford: Oxford University Press; 2011.

    Google Scholar 

  157. Farah MJ, Wolpe PR. Monitoring and manipulating brain function: new neuroscience technologies and their ethical implications. Hastings Cent Rep. 2004;34(3):35–45.

    Article  PubMed  Google Scholar 

  158. Heinrichs JH. The promises and perils of non-invasive brain stimulation. Int J Law Psychiatry. 2012;35(2):121–9.

    Article  PubMed  Google Scholar 

  159. Jotterand F, Giordano J. Transcranial magnetic stimulation, deep brain stimulation and personal identity: ethical questions, and neuroethical approaches for medical practice. Int Rev Psychiatry. 2011;23(5):476–85.

    Article  PubMed  Google Scholar 

  160. Lipsman N, Glannon W. Brain, mind and machine: what are the implications of deep brain stimulation for perceptions of personal identity, agency and free will? Bioethics. 2013;27(9):465–70.

    Article  PubMed  Google Scholar 

  161. Mathews DJH. Deep brain stimulation, personal identity and policy. Int Rev Psychiatry. 2011;23(5):486–92.

    Article  PubMed  Google Scholar 

  162. Witt K, Kuhn J, Timmermann L, Zurowski M, Woopen C. Deep brain stimulation and the search for identity. Neuroethics. 2013;6:499–511.

    Article  PubMed  Google Scholar 

  163. Eliyahu U, Berlin S, Hadad E, Heled Y, Moran DS. Psychostimulants and military operations. Mil Med. 2007;172(4):383–7.

    Article  PubMed  Google Scholar 

  164. Meyer IWJ, Cole CM. Physical and chemical castration of sex offenders. J Offender Rehabil. 1997;25(3–4):1–18.

    Article  Google Scholar 

  165. Welie JVM. In the face of suffering. Omaha, NE: Creighton University Press; 1998. p. 304.

    Google Scholar 

  166. Kapp SK, Gillespie-Lynch K, Sherman LE, Hutman T. Deficit, difference, or both? Autism and neurodiversity. Dev Psychol. 2013;49(1):59.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy H. Hamilton M.D., M.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wurzman, R.P., Hamilton, R.H. (2016). Ethical Aspects of tDCS Use in Neuropsychiatry and the Risk of Misuse. In: Brunoni, A., Nitsche, M., Loo, C. (eds) Transcranial Direct Current Stimulation in Neuropsychiatric Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-33967-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33967-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33965-8

  • Online ISBN: 978-3-319-33967-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics