Skip to main content

Deep Venous Thrombosis and Tendon Healing

  • Chapter
  • First Online:
Metabolic Influences on Risk for Tendon Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 920))

Abstract

Tendon metabolism after acute Achilles tendon rupture (ATR) is associated with major complications related to immobilization, which results in reduced circulation, high risk of deep venous thrombosis (DVT), impaired healing and functional deficits.

DVT has been demonstrated to occur in up to 50 % of the patients with ATR. Suffering from a DVT during tendon healing has been demonstrated as an independent predictive factor for impaired patient outcome at 1 year after ATR, suggesting that specific interventions are warranted to prevent DVT. Since pharmacological DVT prophylaxis has low or no effect during lower leg immobilization it is speculated whether adjuvant treatment with intermittent pneumatic compression (IPC) applied during lower limb immobilization can reduce the incidence of DVT.

IPC, which acts through mechanical, chemical and molecular mechanisms, has been demonstrated to enhance neuro-vascular ingrowth in a tendon repair model and stimulate collagen production leading to improved maximum force during healing.

Recently, a prospective randomized trial compared adjuvant IPC applied under an orthosis versus plaster cast only in ATR patients. The study found at 2 weeks post-operatively 21 % DVTs in the IPC-group compared to 37 % in the control group. Patients that received no IPC treatment exhibited an almost threefold increased odds for DVT, independently of age. Furthermore, using microdialysis technique, adjuvant IPC treatment was shown to increase the metabolic healing activity at 2 weeks post-ATR.

Tendon healing is impaired by reduced circulation and DVT. The demonstration that adjuvant IPC effectively reduced DVT incidence, and also is capable of enhancing the metabolic response suggests that IPC treatment may not only be a viable means of prophylaxis against DVT, but possibly also a method of promoting healing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACOS:

Achilles Combined Outcome Score

ATR:

Achilles Tendon Rupture

ATRS:

Achilles tendon Total Rupture Score

BMI:

Body Mass Index

CDS:

Color Duplex Sonography

CDU:

Compression Duplex Ultrasound

DVT:

Deep Venous Thrombosis

EQ-5DTM :

EuroQol, a generic health-related quality of life score

IPC:

Intermittent Pneumatic Compression

LSI:

Limb Symmetry Index

PAS:

Physical Activity Scale

RR:

Relative Risk or Risk Ratio

VTE:

Venous Thromboembolism

References

  1. Treasure T (2010) Venous thromboembolism: reducing the risk. In: CG92 (ed) Excellence NIfHaC. National Institute for Health and Clinical Excellence, London, p 24–8

    Google Scholar 

  2. Cohen AT, Agnelli G, Anderson FA et al (2007) Venous thromboembolism (VTE) in Europe. The number of VTE events and associated morbidity and mortality. Thromb Haemost 98(4):756–764

    CAS  PubMed  Google Scholar 

  3. Nokes TJ, Keenan J (2009) Thromboprophylaxis in patients with lower limb immobilisation – review of current status. Br J Haematol 146(4):361–368

    Article  PubMed  Google Scholar 

  4. Bergqvist D, Lowe G (2002) Venous thromboembolism in patients undergoing laparoscopic and arthroscopic surgery and in leg casts. Arch Intern Med 162(19):2173–2176

    Article  PubMed  Google Scholar 

  5. Geerts WH, Code KI, Jay RM, Chen E, Szalai JP (1994) A prospective study of venous thromboembolism after major trauma. N Engl J Med 331(24):1601–1606

    Article  CAS  PubMed  Google Scholar 

  6. Karlsson JCJNvDCM N, Thermann H (2014) Achilles tendon disorders. A comprehensive overview of diagnosis and treatment. DJO Publications, London

    Google Scholar 

  7. Craik JD, Clark A, Hendry J, Sott AH, Hamilton PD (2015) The effect of ankle joint immobilization on lower limb venous flow. Foot Ankle Int 36(1):18–23

    Article  PubMed  Google Scholar 

  8. Nilsson-Helander K, Thurin A, Karlsson J, Eriksson BI (2009) High incidence of deep venous thrombosis after Achilles tendon rupture: a prospective study. Knee Surg Sports Traumatol Arthrosc 17(10):1234–1238

    Article  PubMed  Google Scholar 

  9. Wille-Jorgensen P, Jorgensen LN, Crawford M (2005) Asymptomatic postoperative deep vein thrombosis and the development of postthrombotic syndrome. A systematic review and meta-analysis. Thromb Haemost 93(2):236–241

    CAS  PubMed  Google Scholar 

  10. Lohr JM, James KV, Deshmukh RM, Hasselfeld KA, Allastair B, Karmody A (1995) Calf vein thrombi are not a benign finding. Am J Surg 170(2):86–90

    Article  CAS  PubMed  Google Scholar 

  11. Oishi CS, Grady-Benson JC, Otis SM, Colwell CW Jr, Walker RH (1994) The clinical course of distal deep venous thrombosis after total hip and total knee arthroplasty, as determined with duplex ultrasonography. J Bone Joint Surg Am 76(11):1658–1663

    CAS  PubMed  Google Scholar 

  12. Domeij Arverud E (2015) Acute achilles tendon rupture: predictors and intervention to promote outcome [Doctoral PhD]. Karolinska Institutet, Stockholm

    Google Scholar 

  13. Khan RJK, Fick D, Keogh A, Crawford J, Brammar T, Parker M (2005) Treatment of acute achilles tendon ruptures – a meta-analysis of randomized, controlled trials. J Bone Joint Surg Am Vol 87A(10):2202–2210

    Article  Google Scholar 

  14. Chen AH, Frangos SG, Kilaru S, Sumpio BE (2001) Intermittent pneumatic compression devices – physiological mechanisms of action. Eur J Vasc Endovasc Surg 21(5):383–392

    Article  CAS  PubMed  Google Scholar 

  15. Dahl J, Li J, Bring DK, Renstrom P, Ackermann PW (2007) Intermittent pneumatic compression enhances neurovascular ingrowth and tissue proliferation during connective tissue healing: a study in the rat. J Orthop Res 25(9):1185–1192

    Article  PubMed  Google Scholar 

  16. Park SH, Silva M (2003) Effect of intermittent pneumatic soft-tissue compression on fracture-healing in an animal model. J Bone Joint Surg Am Vol 85A(8):1446–1453

    Google Scholar 

  17. Park SH, Silva M (2008) Intermittent pneumatic soft tissue compression: changes in periosteal and medullary canal blood flow. J Orthop Res 26(4):570–577

    Article  PubMed  Google Scholar 

  18. Khanna A, Gougoulias N, Maffulli N (2008) Intermittent pneumatic compression in fracture and soft-tissue injuries healing. Br Med Bull 88(1):147–156

    Article  PubMed  Google Scholar 

  19. Schizas N, Li J, Andersson T et al (2010) Compression therapy promotes proliferative repair during rat Achilles tendon immobilization. J Orthop Res 28(7):852–858

    PubMed  Google Scholar 

  20. Challis MJ, Gaston P, Wilson K, Jull GA, Crawford R (2006) Cyclic pneumatic soft-tissue compression accelerates the union of distal radial osteotomies in an ovine model. J Bone Joint Surg (Br) 88(3):411–415

    Article  CAS  Google Scholar 

  21. Challis MJ, Jull GJ, Stanton WR, Welsh MK (2007) Cyclic pneumatic soft-tissue compression enhances recovery following fracture of the distal radius: a randomised controlled trial. Aust J Physiother 53(4):247–252

    Article  PubMed  Google Scholar 

  22. Boushel R, Langberg H, Green S, Skovgaard D, Bulow J, Kjaer M (2000) Blood flow and oxygenation in peritendinous tissue and calf muscle during dynamic exercise in humans. J Physiol 524(Pt 1):305–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kjaer M, Langberg H, Skovgaard D et al (2000) In vivo studies of peritendinous tissue in exercise. Scand J Med Sci Sports 10(6):326–331

    Article  CAS  PubMed  Google Scholar 

  24. Magnusson SP, Langberg H, Kjaer M (2010) The pathogenesis of tendinopathy: balancing the response to loading. Nat Rev Rheumatol 6(5):262–268

    Article  PubMed  Google Scholar 

  25. Bring R, Renstrom S, Hart A (2009) Prolonged immobilization compromises up-regulation of repair genes after tendon rupture in a rat model. Scand J Med Sci Sports 20(3):411–417

    Article  PubMed  Google Scholar 

  26. Molloy TJ, Wang Y, Horner A, Skerry TM, Murrell GA (2006) Microarray analysis of healing rat Achilles tendon: evidence for glutamate signaling mechanisms and embryonic gene expression in healing tendon tissue. J Orthop Res 24(4):842–855

    Article  CAS  PubMed  Google Scholar 

  27. Ackermann PW, Salo PT, Hart DA (2009) Neuronal pathways in tendon healing. Front Biosci (Landmark edition) 14:5165–5187

    Google Scholar 

  28. Greve K, Domeij-Arverud E, Labruto F et al (2012) Metabolic activity in early tendon repair can be enhanced by intermittent pneumatic compression. Scand J Med Sci Sports 22(4):E55–E63

    Article  CAS  PubMed  Google Scholar 

  29. Schizas N, Lian O, Frihagen F, Engebretsen L, Bahr R, Ackermann PW (2010) Coexistence of up-regulated NMDA receptor 1 and glutamate on nerves, vessels and transformed tenocytes in tendinopathy. Scand J Med Sci Sports 20(2):208–215

    Article  CAS  PubMed  Google Scholar 

  30. Rohrer O, Eicher M (2006) Effectiveness of intermittent pneumatic compression (IPC) on thrombosis prophylaxis: a systematic literature review. Pflege 19(3):175–187

    Article  PubMed  Google Scholar 

  31. Eppsteiner RW, Shin JJ, Johnson J, van Dam RM (2010) Mechanical compression versus subcutaneous heparin therapy in postoperative and posttrauma patients: a systematic review and meta-analysis. World J Surg 34(1):10–19

    Article  PubMed  Google Scholar 

  32. Lapidus LJ, Rosfors S, Ponzer S et al (2007) Prolonged thromboprophylaxis with dalteparin after surgical treatment of achilles tendon rupture: a randomized, placebo-controlled study. J Orthop Trauma 21(1):52–57

    Article  PubMed  Google Scholar 

  33. Virchenko O, Aspenberg P, Lindahl TL (2008) Low molecular weight heparin impairs tendon repair. J Bone Joint Surg (Br) 90(3):388–392

    Article  CAS  Google Scholar 

  34. Kakkos SK, Caprini JA, Geroulakos G, Nicolaides AN, Stansby GP, Reddy DJ (2009) Combined intermittent pneumatic leg compression and pharmacological prophylaxis for prevention of venous thrombo-embolism in high-risk patients. Eur J Vasc Endovasc Surg 37(3):364–365

    Article  CAS  PubMed  Google Scholar 

  35. Eisele R, Kinzl L, Koelsch T (2007) Rapid-inflation intermittent pneumatic compression for prevention of deep venous thrombosis. J Bone Joint Surg Am 89(5):1050–1056

    Article  CAS  PubMed  Google Scholar 

  36. Falck-Ytter Y, Francis CW, Johanson NA et al (2012) Prevention of VTE in orthopedic surgery patients: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 141(2 Suppl):e278S–e325S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Domeij-Arverud E, Labruto F, Latifi A, Nilsson G, Edman G, Ackermann PW (2015) Intermittent pneumatic compression reduces the risk of deep vein thrombosis during post-operative lower limb immobilisation: a prospective randomised trial of acute ruptures of the Achilles tendon. Bone Joint J 97-b(5):675–680

    Article  CAS  PubMed  Google Scholar 

  38. Domeij-Arverud E AJ, Labruto F, Ackermann P (2013) Adjuvant compression therapy in orthopaedic surgery – an evidence-based review. Eur Orthop Traumatol 49–57

    Google Scholar 

  39. NICE (2010) Guidelines: venous thromboembolism: reducing the risk NICE clinical guideline 92. 2010 January

    Google Scholar 

  40. Treasure T, Hill J (2010) NICE guidance on reducing the risk of venous thromboembolism in patients admitted to hospital. J R Soc Med 103(6):210–212

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica Domeij-Arverud .

Editor information

Editors and Affiliations

Glossary

Concentric muscle contraction

When a muscle shortens while producing a force

Eccentric muscle contraction

When a muscle lengthens while producing a force

Heel-rise

The exercise in which the subject performs a plantar flexion when standing and back down again

Incidence

The number of new cases of a condition/injury that develop during a specific time period

LSI

The ratio of the involved limb score and the uninvolved limb score expressed in percent (involved/uninvolved x 100 = LSI)

Predictor

The independent variable used to explain or to predict the outcome variable

Risk factor

A variable associated with an increased risk of injury or disease

Work

The product of a constant force and the distance the object is moved in the direction of the force (J)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Domeij-Arverud, E., Ackermann, P.W. (2016). Deep Venous Thrombosis and Tendon Healing. In: Ackermann, P., Hart, D. (eds) Metabolic Influences on Risk for Tendon Disorders. Advances in Experimental Medicine and Biology, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-319-33943-6_21

Download citation

Publish with us

Policies and ethics