Skip to main content

Flow-Level Packet Loss Analysis of a Markovian Bottleneck Buffer

  • Chapter
  • First Online:
Seminal Contributions to Modelling and Simulation

Abstract

Buffer overflow in intermediate network routers is the prime cause of packet loss in wired communication networks. Packet loss is usually quantified by the packet loss ratio , the fraction of packets that are lost in a buffer. While this measure captures part of the loss performance of the buffer, we show that it is insufficient to quantify the effect of loss on user-perceived quality of service for multimedia streaming applications. In this contribution, we refine the quantification of loss in two ways. First, we focus on loss of a single flow, rather than loss in a buffer. Second, we focus on the different moments of the time and number of accepted packets between losses, rather than just the mean number of accepted packets between losses (which directly relates to the packet loss ratio). The network node is modelled as a Markov-modulated M/M/1/N-type queueing system which is sufficiently versatile to capture the arrival correlation while keeping the analysis tractable. We illustrate our approach by some numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Finding the \( N \times M \) matrix \( X \) in \( AX = B \) (A is an \( N \times N \) matrix and B is an \( N \times M \) matrix) by Gaussian elimination requires \( \frac{1}{3}N^{3} + N^{2} M - \frac{1}{3}N \) multiplications and \( \frac{1}{3}N^{3} + (M - \frac{1}{2})N^{2} - (M - \frac{1}{6})N \) additions. \( N \times N \) matrix multiplication and addition requires \( N^{2} (N - 1) \) and \( N^{2} \) additions and \( N^{3} \) and 0 multiplications, respectively.

References

  1. Ait-Hellal O, Altman E, Jean-Marie A, Kurkova I (1999) On loss probabilities in presence of redundant packets and several traffic sources. Perform Eval 36–37:485–518

    Article  MATH  Google Scholar 

  2. Alouf S, Nain P, Towsley D (2001) Inferring network characteristics via moment-based estimators. Proc INFOCOM 2001:1045–1054

    Google Scholar 

  3. Altman E, Jean-Marie A (1998) Loss probabilities for messages with redundant packets feeding a finite buffer. IEEE J Select Areas Commun 16(5):778–787

    Article  Google Scholar 

  4. Bratiychuk M, Chydzinski A (2009) On the loss process in a batch arrival queue. Appl Math Model 33(9):3565–3577

    Article  MathSciNet  MATH  Google Scholar 

  5. Cidon I, Khamisy A, Sidi M (1993) Analysis of packet loss processes in high speed networks. IEEE Trans Inf Theory IT-39(1):98–108

    Google Scholar 

  6. Dán G, Fodor V, Karlsson G (2006) On the effects of the packet size distribution on the packet loss process. Telecommun Syst 32(1):31–53

    Article  MATH  Google Scholar 

  7. Dán G, Fodor V, Karlsson G (2006) On the effects of the packet size distribution on FEC performance. Comput Netw 50(8):1104–1129

    Article  MATH  Google Scholar 

  8. Dube P, Ait-Hellal O, Altman E (2003) On loss probabilities in presence of redundant packets with random drop. Perform Eval 52(3–4):147–167

    Article  MATH  Google Scholar 

  9. Fiems D, Bruneel H (2005) On higher-order packet loss characteristics. In: Proceedings of the 2005 networking and electronic commerce research conference, Riva del Garda, Italy

    Google Scholar 

  10. Fiems D, De Vuyst S, Wittevrongel S, Bruneel H (2009) Packet loss characteristics for M/G/1/N queueing systems. Ann Oper Res 170(1):113–131

    Article  MathSciNet  MATH  Google Scholar 

  11. Fiems D, De Vuyst S, Wittevrongel S, Bruneel H (2009) An analytic study of a scalable video buffer. Telecommun Syst 41(1):25–36

    Article  Google Scholar 

  12. Frossard P (2001) FEC performance in multimedia streaming. IEEE Commun Lett 5(3):122–124

    Article  Google Scholar 

  13. Gravey A, Hébuterne G (1992) Simultaneity in discrete-time single server queues with Bernoulli inputs. Perform Eval 14:123–131

    Article  MathSciNet  MATH  Google Scholar 

  14. Gurewitz O, Sidi M, CidonI I (2000) The ballot theorem strikes again: packet loss process distribution. IEEE Trans Inf Theory 46(7):2588–2595

    Article  MathSciNet  MATH  Google Scholar 

  15. Hadar O, Huber M, Huber R, Shmueli R (2004) Quality measurements for compressed video transmitted over a lossy packet network. Opt Eng 43(2):506–520

    Article  Google Scholar 

  16. Inoue Y, Takine T (2015) The M/D/1 + D queue has the minimum loss probability among M/G/1 + G queues. Oper Res Lett 43(6):629–632

    Article  MathSciNet  Google Scholar 

  17. Inoue Y, Takine T (2015) Analysis of the loss probability in the M/G/1 + G queue. Queue Syst 80(4):363–386

    Article  MathSciNet  MATH  Google Scholar 

  18. Jelenković P (1999) Subexponential loss rates in a GI/GI/1 queue with applications. Queue Syst 33:91–123

    Google Scholar 

  19. Kim H, Schroff N (2001) Loss probability calculations and asymptotic analysis for finite buffer multiplexers. IEEE/ACM Trans Netw 9(6):755–768

    Article  Google Scholar 

  20. Kim C, Dudin S, Klimenok V (2009) The MAP/PH/1/N queue with flows of customers as a model for traffic control in telecommunication networks. Perform Eval 66:564–579

    Article  Google Scholar 

  21. Kumazoe K, Kawahara K, Takine T, Oie Y (1997) Analysis of packet loss in transport layer over ATM networks. Int J Commun Syst 10:181–192

    Article  Google Scholar 

  22. Latouche G, Ramaswami V (1999) Introduction to matrix analytic methods in stochastic modeling. Series on statistics and applied probability. ASA-SIAM

    Google Scholar 

  23. Lin GC, Suda T, Ishizaki F (2005) Loss probability for a finite buffer multiplexer with the M/G/∞ input process. Telecommun Syst 29(3):181–197

    Article  Google Scholar 

  24. Michiel H, Laevens K (1997) Teletraffic engineering in a broad-band era. Proc IEEE 85(12):2007–2033

    Article  Google Scholar 

  25. Nardelli PHJ, Kountouris M, Cardieri P, Latva-aho M (2014) Throughput optimization in wireless networks under stability and packet loss constraints. IEEE Trans Mob Comput 13(8):1883–1895

    Article  Google Scholar 

  26. Pihlsgard M (2005) Loss rate asymptotics in a GI/G/1 queue with finite buffer. Stoch Models 21(4):913–931

    Article  MathSciNet  Google Scholar 

  27. Schulzrinne H, Kurose J, Towsley D (1992) Loss correlation for queues with burtsty input streams. Proc IEEE ICC 219–224

    Google Scholar 

  28. Sheng H, Li S (1994) Spectral analysis of packet loss rate at a statistical multiplexer for multimedia services. IEEE/ACM Trans Network 2(1):53–65

    Article  Google Scholar 

  29. Steyaert B, Xiong Y, Bruneel H (1997) An efficient solution technique for discrete-time queues fed by heterogeneous traffic. Int J Commun Syst 10:73–86

    Article  Google Scholar 

  30. Takagi H (1993) Queueing analysis. Finite systems, vol 2. North-Holland

    Google Scholar 

  31. Takine T, Suda T, Hasegawa T (1995) Cell loss and output process analysis of a finite-buffer discrete-time ATM queueing system with correlated arrivals. IEEE Trans Commun 43:1022–1037

    Article  Google Scholar 

  32. Verscheure O, Garcia X, Karlsson G, Hubaux J (1998) User-oriented QoS in packet video delivery. IEEE Netw Mag 12:12–21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Fiems .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fiems, D., De Vuyst, S., Bruneel, H. (2016). Flow-Level Packet Loss Analysis of a Markovian Bottleneck Buffer. In: Al-Begain, K., Bargiela, A. (eds) Seminal Contributions to Modelling and Simulation. Simulation Foundations, Methods and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-33786-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33786-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33785-2

  • Online ISBN: 978-3-319-33786-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics