Skip to main content

On Practical Automated Engineering Design

  • Chapter
  • First Online:
Seminal Contributions to Modelling and Simulation

Abstract

In engineering, it is usually necessary to design systems as cheap as possible whilst ensuring that certain constraints are satisfied. Computational optimization methods can help to find optimal designs automatically. However, it is demonstrated in this work that an optimal design is often not robust against variations caused by the manufacturing process, which would result in unsatisfactory product quality. In order to avoid this, a meta-method is used in here, which can guide arbitrary optimization algorithms towards more robust solutions. This was demonstrated on a standard benchmark problem, the pressure vessel design problem, for which a robust design was found using the proposed method together with self-adaptive stepsize search , an optimization algorithm with only one control parameter to tune . The drop-out rate of a simulated manufacturing process was reduced by 30 % whilst maintaining near-minimal production costs, demonstrating the potential of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnaud R, Poirion F (2014) Stochastic annealing optimization of uncertain aeroelastic system. Aerosp Sci Technol 39:456–464

    Article  Google Scholar 

  2. Azad SK, Hasancebi O (2014) An elitist self-adaptive step-size search for structural design optimization. Appl Soft Comput 19:226–235

    Article  Google Scholar 

  3. Azad SK, Hasancebi O (2014) Elitist self-adaptive step-size search in optimum sizing of steel structures. Int J Adv Comput Sci Appl 4(4):192–196

    Google Scholar 

  4. Bach H (1969) On the downhill method. Commun ACM 12(12):675–677

    Article  MATH  Google Scholar 

  5. Cao YJ, Wu QH (1999) A mixed variable evolutionary programming for optimization of mechanical design. Eng Intell Syst Electr Eng Commun 7(2):77–82

    Google Scholar 

  6. Christensen PW, Klarbring A (2008) An introduction to structural optimization. Springer

    Google Scholar 

  7. Coello CAC (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191(11–12):1245–1287

    Article  MathSciNet  MATH  Google Scholar 

  8. Coello CAC, Montes EM (2001) Use of dominance-based tournament selection to handle constraints in genetic algorithms. Proc ANNIE 11:177–182

    Google Scholar 

  9. Congedo PM, Witteveen J, Iaccarino G (2013) A simplex-based numerical framework for simple and efficient robust design optimization. Comput Optim Appl 56:231–251

    Article  MathSciNet  MATH  Google Scholar 

  10. Costanzo F (2013) Engineering mechanics: statics, 2nd edn. McGraw-Hill Companies

    Google Scholar 

  11. Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186(2–4):311–338

    Article  MATH  Google Scholar 

  12. Dias Junior A, da Silva Junior DC (2013) Using guiding heuristics to improve the dynamic checking of temporal properties in data dominated high-level designs. In: Proceedings of IEEE Computer Society Annual Symposium on VLSI, pp 20–25

    Google Scholar 

  13. Dimopoulos GG (2007) Mixed-variable engineering optimization based on evolutionary and social metaphors. Comput Methods Appl Mech Eng 196(4–6):803–817

    Article  MATH  Google Scholar 

  14. Dorigo M, Gambardella L (1997) Ant colony system: a cooperative learning approach to the travelling salesman problem. IEEE Trans Evol Comput 1(1):53–66

    Article  Google Scholar 

  15. El-Mihoub T, Hopgood AA, Nolle L, Battersby A (2006) Hybrid genetic algorithms: a review. Eng Lett 13(2):124–137

    Google Scholar 

  16. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley

    Google Scholar 

  17. Guo WA, Li WZ, Zhang Q, Wang L, Wu QD, Ren HL (2015) Biogeography-based particle swarm optimization with fuzzy elitism and its applications to constrained engineering problems. Eng Optim 46(11):1465–1484

    Article  MathSciNet  Google Scholar 

  18. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press

    Google Scholar 

  19. He S, Prempain E, Wu QH (2004) An improved particle swarm optimiser for mechanical design optimization problems. Eng Optim 36(5):585–605

    Article  MathSciNet  Google Scholar 

  20. Jamshidi R, Ghomi SMTF, Karimi B (2015) Flexible supply chain optimization with controllable lead time and shipping option. Appl Soft Comput 30:26–35

    Article  Google Scholar 

  21. Jayaprakasam S, Rahim SKA, Leow CY (2015) PSOGSA-explore: a new hybrid metaheuristic approach for beam pattern optimization in collaborative beamforming. Appl Soft Comput 30:229–237

    Article  Google Scholar 

  22. Jeet V, Kutanoglu E (2007) Lagrangian relaxation guided problem space search heuristics for generalized assignment problems. Eur J Oper Res 182(3):1039–1056

    Article  MATH  Google Scholar 

  23. Kanagaraj G, Ponnambalam SG, Jawahar N, Nilakantan Mukund J (2015) An effective hybrid cuckoo search and genetic algorithm for constrained engineering design optimization. Eng Optim 46(10): 1331–1351

    Google Scholar 

  24. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, vol. 4, pp 1942–1948

    Google Scholar 

  25. Kirkpatrick S, Gelatt CD, Vecchi MP (1984) Optimization by simulated annealing: quantitative study. J Stat Phys 34(1984):975–986

    Article  MATH  Google Scholar 

  26. Kitayama S, Arakawa M, Yamazaki K (2006) Penalty function approach for the mixed discrete nonlinear problems by particle swarm optimization. Struct Multidiscip Optim 32(3):191–202

    Google Scholar 

  27. Li Z, Li Ze, Nguyen TT, Chen S (2015) Orthogonal chemical reaction optimization algorithm for global numerical optimization problems. Expert Syst Appl 42:3242–3252

    Article  Google Scholar 

  28. Li X, Zhang G (2013) Minimum penalty for constrained evolutionary optimization. Comput Optim Appl 60(2):513–544

    Article  MathSciNet  MATH  Google Scholar 

  29. Liao T, Socha K, Montes de Oca MA, Stuetzle T, Dorigo M (2014) Ant colony optimization for mixed-variable optimization problems. IEEE Trans Evol Comput 18(4):503–518

    Article  Google Scholar 

  30. Lopez RH, Ritto TG, Sampaio R, Souza de Cursi JE (2014) A new algorithm for the robust optimization of rotor-bearing systems. Eng Optim 46(8):1123–1138

    Article  Google Scholar 

  31. Mahia M, Baykan ÖK, Kodaz H (2015) A new hybrid method based on particle swarm optimization, ant colony optimization and 3-opt algorithms for traveling salesman problem. Appl Soft Comput 30:484–490

    Article  Google Scholar 

  32. Martínez-Soto R, Castillo O, Aguilar LT, Rodriguez A (2015) A hybrid optimization method with PSO and GA to automatically design Type-1 and Type-2 fuzzy logic controllers. Int J Mach Learn Cybernet 6:175–196

    Article  Google Scholar 

  33. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  Google Scholar 

  34. Murty KG (1983) Linear programming, John Wiley & Sons

    Google Scholar 

  35. Nelder JA, Mead R (1965) A simplex-method for function minimization. Comput J 7(4):308–313

    Article  MATH  Google Scholar 

  36. Nema S, Goulermas J, Sparrow G, Cook P (2008) A hybrid particle swarm branch-and-bound (HPB) optimizer for mixed discrete nonlinear programming. IEEE Trans Syst Man Cybern Part A 38(6):1411–1424

    Article  Google Scholar 

  37. Nolle L (2006) On a hill-climbing algorithm with adaptive step size: towards a control parameter-less black-box optimisation Algorithm. In: Reusch B (ed) Computational intelligence, theory and applications, advances in soft computing, vol 38. Springer, pp 587–595

    Google Scholar 

  38. Nolle L (2007) SASS applied to optimum work roll profile selection in the hot rolling of wide steel. Knowl-Based Syst 20(2):203–208

    Article  Google Scholar 

  39. Nolle L, Bland JA (2012) Self-adaptive stepsize search for automatic optimal design. Knowl-Based Syst 29:75–82

    Article  Google Scholar 

  40. OED (2015) Oxford English dictionary. Oxford University Press

    Google Scholar 

  41. Pappas M, Amba-Rao CL (1971) A direct search algorithm for automated optimum structural design. Am Inst Aeron Astron J 9(3):387–393

    Article  Google Scholar 

  42. Pholdee N, Park W, Kim DK, Im Y, Bureerat S, Kwon H, Chun M (2015) Efficient hybrid evolutionary algorithm for optimization of a strip coiling process. Eng Optim 47(4), 521–532

    Google Scholar 

  43. Pullarcot S (2002) Practical guide to pressure vessel manufacturing. CRC Press

    Google Scholar 

  44. Rao SS (2009) Engineering optimization, theory and practice, 4th edn. Wiley

    Google Scholar 

  45. Rechenberg I (1973) Evolutionsstrategie – Optimierung technischer Systeme nach Prinzipien derbiologischen Evolution, Frommann-Holzboog

    Google Scholar 

  46. Rubinstein RY (1981) Simulation and the Monte Carlo method. Wiley, New York

    Book  MATH  Google Scholar 

  47. Runarsson TP, Yao X (2000) Stochastic ranking for constrained evolutionary optimization. IEEE Trans Evol Comput 4(3):284–294

    Article  Google Scholar 

  48. Salimi H (2015) Stochastic fractal search: a powerful metaheuristic algorithm. Knowl-Based Syst 75:1–18

    Article  Google Scholar 

  49. Sandgren S (1990) Nonlinear integer and discrete programming in mechanical design optimization. J Mech Des 112:223–229

    Article  Google Scholar 

  50. Sayol J, Nolle L, Schaefer G, Nakashima T (2008) Comparison of simulated annealing and SASS for parameter estimation of biochemical networks. In: Proceedings of IEEE World Congress on Computational Intelligence, 1–6 June, Hong Kong, China, pp 3568–3571

    Google Scholar 

  51. Shanley FR (1949) Principles of structural design for minimum weight. J Aeron Sci 16(3):133–149

    Article  Google Scholar 

  52. Standards Australia (1995) Steel plates for pressure equipment AS 1548:1995

    Google Scholar 

  53. Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  54. Templeman AB (1970) Structural design or minimum cost using the method of geometric programming. ICE Proc. 46(4):459–472

    Google Scholar 

  55. Wang J, Yuan W, Cheng D (2015) Hybrid genetic–particle swarm algorithm: an efficient method for fast optimization of atomic clusters. Comput Theor Chem 1059:12–17

    Article  Google Scholar 

  56. Xu R, Venayagamoorthy GK, Wunsch DC (2007) Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization. Neural Netw 20(8):917–992

    Article  MATH  Google Scholar 

  57. Yang HZ, Zhu Y, Lu QJ, Zhang J (2015) Dynamic reliability based design optimization of the tripod sub-structure of offshore wind turbines. Renew Energy 78:16–25

    Article  Google Scholar 

  58. Zhou Y, Zhou G, Zhang J (2015) A hybrid glow worm swarm optimization algorithm to solve constrained multimodal functions optimization. Optim: J Math Progr Oper Res 64(4), 1057–1080

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Nolle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nolle, L., Krause, R., Cant, R.J. (2016). On Practical Automated Engineering Design. In: Al-Begain, K., Bargiela, A. (eds) Seminal Contributions to Modelling and Simulation. Simulation Foundations, Methods and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-33786-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33786-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33785-2

  • Online ISBN: 978-3-319-33786-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics