Skip to main content

Processing Bio-medical Data with Class-Dependent Feature Selection

  • Conference paper
  • First Online:
Advances in Neural Networks (WIRN 2015)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 54))

Included in the following conference series:

  • 1497 Accesses

Abstract

In this paper, we show how to select different feature subsets for different classes, i.e., class-dependent feature subsets, for biomedical data. A feature importance ranking measure, i.e., class separability measure, is used to rank features for each class and obtain class-dependent feature importance ranking. Then several feature subsets for each class are formed and an “optimal” one for each class is determined through a classifier, e.g., the support vector machine (SVM). Our method of class-dependent feature selection is applied on several biomedical data sets and compared with class-independent feature selection. The experimental result shows that our approach to class-dependent feature selection is efficient in reducing feature dimension and producing satisfactory classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baggenstoss, P.M.: Class-specific features in classification. IEEE Trans. Signal Process. pp. 3428–3432 (1999)

    Google Scholar 

  2. Caurana, R.A., Freitag, D.: Greedy attribute selection. In: Proceedings of the Eleventh International Conference on Machine Learning, pp. 28–36. Morgan Kaufmann Publishers, NEW Brunswick, NJ (1994)

    Google Scholar 

  3. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm (2001)

  4. Chu, F., Wang, L.P.: Gene expression data analysis using support vector machines. In: Proceedings of the International Joint Conference on Neural Networks 2003, vols. 1–4, pp. 2268–2271 (2003)

    Google Scholar 

  5. Chu, F., Xie, W., Wang, L.P.: Gene selection and cancer classification using a fuzzy neural network. In: Proceedings of the North-American Fuzzy Information Processing Conference (NAFIPS 2004), vol. 2, pp. 555–559 (2004)

    Google Scholar 

  6. Chu, F., Wang, L.P.: Applications of support vector machines to cancer classification with microarray data. Int. J. Neural Syst. 15(6), 475–484 (2005)

    Article  MathSciNet  Google Scholar 

  7. Crawford, M.M., Kumar, S., Ricard, M.R., Gibeaut, J.C., Neuenschwander, A.: Fusion of airborne polarimetric and interferometric SAR for classification of coastal environments. IEEE Trans. Geosci. Remote Sens. 37, 1306–1315 (1999)

    Article  Google Scholar 

  8. Desai, M., Shazeer, D.J.: Acoustic transient analysis using wavelet decomposition. In: IEEE Conference on Neural Networks for Ocean Engineering, pp.29–40 (1991)

    Google Scholar 

  9. Detrano, R.: The Cleveland Heart Disease Data Set. V.A. Medical Center, Long Beach and Cleveland Clinic Foundation (1988)

    Google Scholar 

  10. La Foresta, F., Morabito, F.C., Azzerboni, B., Ipsale, M.: PCA and ICA for the extraction of EEG components in cerebral death assessment. In: IJCNN 05. Proceedings of 2005 IEEE International Joint Conference on Neural Networks, vol. 4, pp. 2532–2537 (2005)

    Google Scholar 

  11. Fu, X.J., Wang, L.P.: Data dimensionality reduction with application to simplifying RBF network structure and improving classification performance. IEEE Trans. Syst. Man Cybern. B Cybern. 33(3), 399–400 (2003)

    Article  Google Scholar 

  12. Fu, X.J., Wang, L.P.: A GA-based novel RBF classifier with class-dependent features. In: Proceedings of 2002 Congress on Evolutionary Computation, no. 2, pp. 1890–1894 (2002)

    Google Scholar 

  13. Fu, X.J., Wang, L.P.: Rule extraction from an RBF classifier based on class-dependent features. In: CEC2002: Proceedings of the 2002 Congress on Evolutionary Computation, vols. 1 and 2, pp. 1916–1921 (2002)

    Google Scholar 

  14. Fu, X.J., Wang, L.P.: A rule extraction system with class-dependent features. In: Ghosh, A., Jain, L.C. (eds.) Evolutionary Computing in Data Mining, pp. 79–99. Springer, Berlin (2005)

    Google Scholar 

  15. Horton, P., Nakai, K.: A probablistic classification system for predicting the cellular localization sites of proteins. In: Intelligent Systems in Molecular Biology, pp.109–115 (1996)

    Google Scholar 

  16. Hsu, C.-W., Lin, C.-J.: A Comparison of methods for multi-class support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)

    Article  Google Scholar 

  17. Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classification. National Taiwan University, Department of Computer Science and Information Engineering, Taipei, Taiwan (2003)

    Google Scholar 

  18. John, G.H., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection problem. In: Proceedings of the Eleventh International Conference on Machine Learning, pp. 367–370. AAAI Press, Portland (1994)

    Google Scholar 

  19. Kira, K., Rendell, L.A.: The feature selection problem: traditional methods and a new algorithm. In: Proceedings of 10th National Conference on Artificial Intelligence, pp. 129–134. AAAI Press/MIT press, Park, CA (1992)

    Google Scholar 

  20. Koller, D., Sahami, M.: Toward Optimal Feature Selection. In: Proceedings of the 13th International Conference on Machine Learning (ML), pp. 284–292, Bari, Italy (1996)

    Google Scholar 

  21. Kononenko, I.: Estimating attributes: analysis and extensions of RELIEF. In: Proceeding of the European Conference on Machine Learning (ECML94), pp. 171–182. Springer-Verlag, Berlin, Heidelberg (1994)

    Google Scholar 

  22. Liu, B., Wan, C.R., Wang, L.P.: An efficient semi-unsupervised gene selection method via spectral biclustering. IEEE Trans. Nano Biosci. 5(2), 110–114 (2006)

    Article  Google Scholar 

  23. Marchiori, E.: Class dependent feature weighting and K-nearest Neighbor classification. Patt. Recogn. Bioinform. LNCS 7986, 69–78 (2013)

    Article  Google Scholar 

  24. Mohammadi, M., Raahemi, B., Akbari, A., Nassersharif, B.: New class-dependent feature transformation for intrusion detection systems. Secur. Commun. Netw. 5, 1296–1311 (2012)

    Article  Google Scholar 

  25. Morabito, C.F.: Independent component analysis and feature extraction techniques for NDT data. Mater. Eval. 58(1), 85–92 (2000)

    Google Scholar 

  26. Musselman, M., Djurdjanovic, D.: Time-frequency distributions in the classification of epilepsy from EEG signals. Expert Syst. Appl. 39, 11413–11422 (2012)

    Article  Google Scholar 

  27. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine learning databases. University of California, Department of Information and Computer Science, Irvine, CA (1998). http://www.ics.uci.edu/~mlearn/MLRepository.html

  28. Oh, I.S., Lee, J.S., Suen, C.Y.: Using class separation for feature analysis and combination of class-dependent features. In: Fourteenth International Conference on Pattern Recognition, no.1, pp. 453–455 (1998)

    Google Scholar 

  29. Oh, I.S., Lee, J.S., Suen, C.Y.: Analysis of class separation and combination of class-dependent features for handwriting recognition. IEEE Trans. Patt. Anal. Mach. Intell. no.21, pp. 1089–1094 (1999)

    Google Scholar 

  30. Tian, J., Li, M., Chen, F., Feng, N.: Learning subspace-based rbfnn using coevolutionary algorithm for complex classification tasks. IEEE Trans. Neural Netw. Learn. Sys. (2015)

    Google Scholar 

  31. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  32. Wang, L.P. (ed.): Support Vector Machines: Theory and Applications. Springer, New York (2005)

    MATH  Google Scholar 

  33. Wang, L.P., Chu, F., Xie, W.: Accurate cancer classification using expressions of very few genes. IEEE/ACM Trans. Bioinf. Comput. Biol. 4(1), 40–53 (2007)

    Article  MathSciNet  Google Scholar 

  34. Wang, L.P., Zhou, N., Chu, F.: A general wrapper approach to selection of class-dependent features. IEEE Trans. Neural Netw. 19(7), 1267–1278 (2008)

    Article  Google Scholar 

  35. Wang, L.P., Fu, X.J.: Data Mining with Computational Intelligence. Springer, Berlin (2005)

    MATH  Google Scholar 

  36. Zhou, N., Wang, L.P.: Effective selection of informative SNPs and classification on the HapMap genotype data. BMC Bioinf. 8, 484 (2007)

    Article  Google Scholar 

  37. Zhou, N., Wang, L.P.: Class-dependent feature selection for face recognition. In: Advances in Neuro-Information Processing, Part II, vol. 5507, pp. 551–558 (2009). Proceedings of 15th International Conference on Neural Information Processing, ICONIP 2008, Auckland, New Zealand, 2008

    Google Scholar 

  38. Zhou, W.G., Dickson, J.: A novel class dependent feature selection method for cancer biomarker discovery. Comput. Biol. Med. 47, 66–75 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lipo Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhou, N., Wang, L. (2016). Processing Bio-medical Data with Class-Dependent Feature Selection. In: Bassis, S., Esposito, A., Morabito, F., Pasero, E. (eds) Advances in Neural Networks. WIRN 2015. Smart Innovation, Systems and Technologies, vol 54. Springer, Cham. https://doi.org/10.1007/978-3-319-33747-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33747-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33746-3

  • Online ISBN: 978-3-319-33747-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics