Skip to main content

Stem Cell Therapy in Traumatic Brain Injury

  • Chapter
  • First Online:
Neurological Regeneration

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

Abstract

Traumatic brain injury is one of the leading causes of major disability and death worldwide. Neural stem cells have recently been shown to contribute to the cellular remodelling that occurs following traumatic brain injury and attention has been drawn to the area of neural stem cells as possible therapy for traumatic brain injury. The neural stem cells may play an important role in the treatment of traumatic brain injury by replacing the damaged cells and eventual remyelination. This chapter summarized a critical assessment of recent data and developed a view comprising of six points to possible quality translation of neural stem cells in traumatic brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel Baki SG, Schwab B, Haber M, Fenton AA, Bergold PJ (2010) Minocycline synergizes with N-acetylcysteine and improves cognition and memory following traumatic brain injury in rats. PLoS One 5, e12490. doi:10.1371/journal.pone.0012490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Abrahamson EE, Ikonomovic MD, Dixon CE, DeKosky ST (2009) Simvastatin therapy prevents brain trauma-induced increases in beta-amyloid peptide levels. Ann Neurol 66:407–414

    Article  CAS  PubMed  Google Scholar 

  • Akdemir Ozisik P, Oruckaptan H, Ozdemir Geyik P, Misirlioglu M, Sargon MF, Kilinc K, Ozgen T (2007) Effect of erythropoietin on brain tissue after experimental head trauma in rats. Surg Neurol 68:547–555

    Article  PubMed  Google Scholar 

  • Alban JP, Hopson MM, Ly V, Whyte J (2004) Effect of methylphenidate on vital signs and adverse effects in adults with traumatic brain injury. Am J Phys Med Rehabil 83:131–137

    Article  PubMed  Google Scholar 

  • Albert-Weissenberger C, Varrallyay C, Raslan F, Kleinschnitz C, Siren AL (2012) An experimental protocol for mimicking pathomechanisms of traumatic brain injury in mice. Exp Transl Stroke Med 4:1. doi:10.1186/2040-7378-4-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Alessandri B, Rice AC, Levasseur J, DeFord M, Hamm RJ, Bullock MR (2002) Cyclosporin A improves brain tissue oxygen consumption and learning/memory performance after lateral fluid percussion injury in rats. J Neurotrauma 19:829–841

    Article  PubMed  Google Scholar 

  • Alvarez-Buylla A, Herrera DG, Wichterle H (2000) The subventricular zone: source of neuronal precursors for brain repair. Prog Brain Res 127:1–11

    Article  CAS  PubMed  Google Scholar 

  • Amen DG, Wu JC, Taylor D, Willeumier K (2011) Reversing brain damage in former NFL players: implications for traumatic brain injury and substance abuse rehabilitation. J Psychoactive Drugs 43:1–5

    Article  PubMed  Google Scholar 

  • Anderson GD, Farin FM, Bammler TK, Beyer RP, Swan AA, Wilkerson H-W, Kantor ED, Hoane MR (2011) The effect of progesterone dose on gene expression after traumatic brain injury. J Neurotrauma 28:1827–1843

    Article  PubMed  PubMed Central  Google Scholar 

  • Atif F, Yousuf S, Sayeed I, Ishrat T, Hua F, Stein DG (2013) Combination treatment with progesterone and vitamin D hormone is more effective than monotherapy in ischemic stroke: the role of BDNF/TrkB/Erk1/2 signaling in neuroprotection. Neuropharmacology 67:78–87

    Article  CAS  PubMed  Google Scholar 

  • Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA (2007) N-Acetylcysteine – a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol 7:355–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atlas: country resources for neurological disorders home page. http://www.whoint/mental_health/neurology/epidemiology/en/index.html. Accessed 15 May 2012

  • Bales JW, Wagner AK, Kline AE, Dixon CE (2009) Persistent cognitive dysfunction after traumatic brain injury: a dopamine hypothesis. Neurosci Biobehav Rev 33:981–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballas N, Mandel G (2005) The many faces of REST oversee epigenetic programming of neuronal genes. Curr Opin Neurobiol 15:500–506

    Article  CAS  PubMed  Google Scholar 

  • Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G (2005) REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121:645–657

    Article  CAS  PubMed  Google Scholar 

  • Ballesteros J, Güemes I, Ibarra N, Quemada JI (2008) The effectiveness of donepezil for cognitive rehabilitation after traumatic brain injury: a systematic review. J Head Trauma Rehabil 23:171–180

    Article  PubMed  Google Scholar 

  • Bambakidis NC, Wang RZ, Franic L, Miller RH (2003) Sonic hedgehog-induced neural precursor proliferation after adult rodent spinal cord injury. J Neurosurg 99 Suppl:70–75

    Google Scholar 

  • Barami K, Diaz FG (2000) Cellular transplantation and spinal cord injury. Neurosurgery 47:691–700

    CAS  PubMed  Google Scholar 

  • Barha CK, Ishrat T, Epp JR, Galea LAM, Stein DG (2011) Progesterone treatment normalizes the levels of cell proliferation and cell death in the dentate gyrus of the hippocampus after traumatic brain injury. Exp Neurol 231:72–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlind A, Karlsson N, Åberg ND, Björk-Eriksson T, Blomgren K, Isgaard J (2010) The growth hormone secretagogue hexarelin increases cell proliferation in neurogenic regions of the mouse hippocampus. Growth Horm IGF Res 20:49–54

    Article  CAS  PubMed  Google Scholar 

  • Bellus SB, Stewart D, Vergo JG, Kost PP, Grace J, Barkstrom SR (1996) The use of lithium in the treatment of aggressive behaviours with two brain-injured individuals in a state psychiatric hospital. Brain Inj 10:849–860

    Article  CAS  PubMed  Google Scholar 

  • Benvenga S, Campenní A, Ruggeri RM, Trimarchi F (2000) Clinical review 113: hypopituitarism secondary to head trauma. J Clin Endocrinol Metab 85:1353–1361

    Article  CAS  PubMed  Google Scholar 

  • Berg C, Oeffner A, Schumm-Draeger P-M, Badorrek F, Brabant G, Gerbert B, Bornstein S, Zimmermann A, Weber M, Broecker-Preuss M, Mann K, Herrmann BL (2010) Prevalence of anterior pituitary dysfunction in patients following traumatic brain injury in a German multi-centre screening program. Exp Clin Endocrinol Diabetes 118:139–144

    Article  CAS  PubMed  Google Scholar 

  • Béziaud T, Ru Chen X, El Shafey N, Fréchou M, Teng F, Palmier B, Beray-Berthat V, Soustrat M, Margaill I, Plotkine M, Marchand-Leroux C, Besson VC (2011) Simvastatin in traumatic brain injury: effect on brain edema mechanisms. Crit Care Med 39:2300–2307

    Article  PubMed  CAS  Google Scholar 

  • Bian X, Yuan X, Qi C (2010) Effect of recombinant human erythropoietin on serum S100B protein and interleukin-6 levels after traumatic brain injury in the rat. Neurol Med Chir (Tokyo) 50:361–366

    Article  Google Scholar 

  • Biegon A (2004) Cannabinoids as neuroprotective agents in traumatic brain injury. Curr Pharm Des 10:2177–2183

    Article  CAS  PubMed  Google Scholar 

  • Blount PJ, Nguyen CD, McDeavitt JT (2002) Clinical use of cholinomimetic agents: a review. J Head Trauma Rehabil 17:314–321

    Article  PubMed  Google Scholar 

  • Boimel M, Grigoriadis N, Lourbopoulos A, Touloumi O, Rosenmann D, Abramsky O, Rosenmann H (2009) Statins reduce the neurofibrillary tangle burden in a mouse model of tauopathy. J Neuropathol Exp Neurol 68:314–325

    Article  CAS  PubMed  Google Scholar 

  • Bourgeois JA, Bahadur N, Minjares S (2002) Donepezil for cognitive deficits following traumatic brain injury: a case report. J Neuropsychiatry Clin Neurosci 14:463–464

    Article  PubMed  Google Scholar 

  • Brustovetsky N, Dubinsky JM (2000) Limitations of cyclosporin A inhibition of the permeability transition in CNS mitochondria. J Neurosci 20:8229–8237

    CAS  PubMed  Google Scholar 

  • Büki A, Okonkwo DO, Povlishock JT (1999) Postinjury cyclosporin A administration limits axonal damage and disconnection in traumatic brain injury. J Neurotrauma 16:511–521

    Article  PubMed  Google Scholar 

  • Bye N, Habgood MD, Callaway JK, Malakooti N, Potter A, Kossmann T, Morganti-Kossmann MC (2007) Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration. Exp Neurol 204:220–233

    Article  CAS  PubMed  Google Scholar 

  • Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27:699–711

    Article  CAS  PubMed  Google Scholar 

  • Campbell JN, Register D, Churn SB (2012) Traumatic brain injury causes an FK506-sensitive loss and an overgrowth of dendritic spines in rat forebrain. J Neurotrauma 29:201–217

    Article  PubMed  Google Scholar 

  • Cao QL, Zhang YP, Howard RM, Walters WM, Tsoulfas P, Whittemore SR (2001) Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp Neurol 167:48–58

    Article  CAS  PubMed  Google Scholar 

  • Cardenas DD, McLean A Jr, Farrell-Roberts L, Baker L, Brooke M, Haselkorn J (1994) Oral physostigmine and impaired memory in adults with brain injury. Brain Inj 8:579–587

    Article  CAS  PubMed  Google Scholar 

  • Casha S, Zygun D, McGowan MD, Bains I, Yong VW, Hurlbert RJ (2012) Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain 135:1224–1236

    Article  PubMed  Google Scholar 

  • Cekic M, Johnson SJ, Bhatt VH, Stein DG (2012) Progesterone treatment alters neurotrophin/proneurotrophin balance and receptor expression in rats with traumatic brain injury. Restor Neurol Neurosci 30:115–126

    CAS  PubMed  Google Scholar 

  • Chang CP, Chio CC, Cheong CU, Chao CM, Cheng BC, Lin MT (2013) Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin Sci 124:165–176

    Article  CAS  PubMed  Google Scholar 

  • Chauhan NB, Gatto R (2010) Synergistic benefits of erythropoietin and simvastatin after traumatic brain injury. Brain Res 1360:177–192

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Shohami E, Constantini S, Weinstock M (1998a) Rivastigmine, a brain-selective acetylcholinesterase inhibitor, ameliorates cognitive and motor deficits induced by closed-head injury in the mouse. J Neurotrauma 15:231–237

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Shohami E, Bass R, Weinstock M (1998b) Cerebro-protective effects of ENA713, a novel acetylcholinesterase inhibitor, in closed head injury in the rat. Brain Res 784:18–24

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Shi J, Ding Y, Yin H, Hang C (2007a) Progesterone prevents traumatic brain injury-induced intestinal nuclear factor kappa B activation and proinflammatory cytokines expression in male rats. Mediators Inflamm 2007:93431

    PubMed  PubMed Central  Google Scholar 

  • Chen G, Shi JX, Hang CH, Xie W, Liu J, Liu X (2007b) Inhibitory effect on cerebral inflammatory agents that accompany traumatic brain injury in a rat model: a potential neuroprotective mechanism of recombinant human erythropoietin (rhEPO). Neurosci Lett 425:177–182

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Shi J-X, Qi M, Wang H-X, Hang C-H (2008a) Effects of progesterone on intestinal inflammatory response, mucosa structure alterations, and apoptosis following traumatic brain injury in male rats. J Surg Res 147:92–98

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Shi J, Jin W, Wang L, Xie W, Sun J, Hang C (2008b) Progesterone administration modulates TLRs/NF-kappaB signaling pathway in rat brain after cortical contusion. Ann Clin Lab Sci 38:65–74

    CAS  PubMed  Google Scholar 

  • Chen G, Shi J, Hu Z, Hang C (2008c) Inhibitory effect on cerebral inflammatory response following traumatic brain injury in rats: a potential neuroprotective mechanism of N-acetylcysteine. Mediators Inflamm 2008:716458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen XR, Besson VC, Beziaud T, Plotkine M, Marchand-Leroux C (2008d) Combination therapy with fenofibrate, a peroxisome proliferator-activated receptor alpha agonist, and simvastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor, on experimental traumatic brain injury. J Pharmacol Exp Ther 326:966–974

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Zhang S, Shi J, Ai J, Qi M, Hang C (2009) Simvastatin reduces secondary brain injury caused by cortical contusion in rats: possible involvement of TLR4/NF-kappaB pathway. Exp Neurol 216:398–406

    Article  CAS  PubMed  Google Scholar 

  • Cherian L, Goodman JC, Robertson C (2007) Neuroprotection with erythropoietin administration following controlled cortical impact injury in rats. J Pharmacol Exp Ther 322:789–794

    Article  CAS  PubMed  Google Scholar 

  • Cherian L, Goodman JC, Robertson C (2011) Improved cerebrovascular function and reduced histological damage with darbepoietin alfa administration after cortical impact injury in rats. J Pharmacol Exp Ther 337:451–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow SY, Moul J, Tobias CA, Himes BT, Liu Y, Obrocka M, Hodge L, Tessler A, Fischer I (2000) Characterization and intraspinal grafting of EGF/bFGF-dependent neurospheres derived from embryonic rat spinal cord. Brain Res 874:87–106

    Article  CAS  PubMed  Google Scholar 

  • Colley BS, Phillips LL, Reeves TM (2010) The effects of cyclosporin-A on axonal conduction deficits following traumatic brain injury in adult rats. Exp Neurol 224:241–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corrigan JD, Selassie AW, Orman JA (2010) The epidemiology of traumatic brain injury. J Head Trauma Rehabil 25:72–80

    Article  PubMed  Google Scholar 

  • Creyghton WM, van Dam PS, Koppeschaar HPF (2004) The role of the somatotropic system in cognition and other cerebral functions. Semin Vasc Med 4:167–172

    Article  PubMed  Google Scholar 

  • Cutler SM, VanLandingham JW, Murphy AZ, Stein DG (2006) Slow-release and injected progesterone treatments enhance acute recovery after traumatic brain injury. Pharmacol Biochem Behav 84:420–428

    Article  CAS  PubMed  Google Scholar 

  • Cutler SM, Cekic M, Miller DM, Wali B, VanLandingham JW, Stein DG (2007) Progesterone improves acute recovery after traumatic brain injury in the aged rat. J Neurotrauma 24:1475–1486

    Article  PubMed  Google Scholar 

  • Dash PK, Johnson D, Clark J, Orsi SA, Zhang M, Zhao J, Grill RJ, Moore AN, Pati S (2011) Involvement of the glycogen synthase kinase-3 signaling pathway in TBI pathology and neurocognitive outcome. PLoS One 6, e24648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demling R (1999) Growth hormone therapy in critically ill patients. N Engl J Med 341:837–839

    Article  CAS  PubMed  Google Scholar 

  • Demling RH (2005) The role of anabolic hormones for wound healing in catabolic states. J Burns Wounds 4, e2

    PubMed  PubMed Central  Google Scholar 

  • Devesa J, Reimunde P, Devesa P, Barberá M, Arce V (2013) Growth hormone (GH) and brain trauma. Horm Behav 63:331–344

    Article  CAS  PubMed  Google Scholar 

  • Dixon CE, Kraus MF, Kline AE, Ma X, Yan HQ, Griffith RG, Wolfson BM, Marion DW (1999) Amantadine improves water maze performance without affecting motor behavior following traumatic brain injury in rats. Restor Neurol Neurosci 14:285–294

    CAS  PubMed  Google Scholar 

  • Djebaili M, Hoffman SW, Stein DG (2004) Allopregnanolone and progesterone decrease cell death and cognitive deficits after a contusion of the rat pre-frontal cortex. Neuroscience 123:349–359

    Article  CAS  PubMed  Google Scholar 

  • Djebaili M, Guo Q, Pettus EH, Hoffman SW, Stein DG (2005) The neurosteroids progesterone and allopregnanolone reduce cell death, gliosis, and functional deficits after traumatic brain injury in rats. J Neurotrauma 22:106–118

    Article  PubMed  Google Scholar 

  • Dodd S, Dean O, Copolov DL, Malhi GS, Berk M (2008) N-acetylcysteine for antioxidant therapy: pharmacology and clinical utility. Expert Opin Biol Ther 8:1955–1962

    Article  CAS  PubMed  Google Scholar 

  • Doulah AH, Rohani AH, Khaksari Haddad M, Motamedi F, Farbood Y, Badavi M, Malek M, Sarkaki A (2009) The effect of peripheral administration of growth hormone on AD-like cognitive deficiency in NBM-lesioned rats. Neurosci Lett 466:47–51

    Article  CAS  PubMed  Google Scholar 

  • Food and Drug Administration (2010) Guidance for industry: qualification process for drug development tools

    Google Scholar 

  • Eaker S, Armant M, Brandwein H, Burger S, Campbell A, Carpenito C (2013) Concise review: guidance in developing commercializable autologous/patient-specific cell therapy manufacturing. Stem Cells Trans Med. doi:10.5966/sctm.2013-0050 [Epub ahead of print]

  • Eckford PD, Sharom FJ (2006) P-glycoprotein (ABCB1) interacts directly with lipid-based anti-cancer drugs and platelet-activating factors. Biochem Cell Biol 84:1022–1033

    Article  CAS  PubMed  Google Scholar 

  • Ehrenreich H, Weissenborn K, Prange H, Schneider D, Weimar C, Wartenberg K, Schellinger PD, Bohn M, Becker H, Wegrzyn M, Jähnig P, Herrmann M, Knauth M, Bähr M, Heide W, Wagner A, Schwab S, Reichmann H, Schwendemann G, Dengler R, Kastrup A, Bartels C (2009) Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke 40:e647–e656

    Article  CAS  PubMed  Google Scholar 

  • Empey PE, McNamara PJ, Young B, Rosbolt MB, Hatton J (2006) Cyclosporin A disposition following acute traumatic brain injury. J Neurotrauma 23:109–116

    Article  PubMed  Google Scholar 

  • Fan Y, Hu J, Li J, Yang Z, Xin X, Wang J, Ding J, Geng M (2005) Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms. Neurosci Lett 374:222–226

    Article  CAS  PubMed  Google Scholar 

  • Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI, Lo EH, STAIR Group (2009) Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 40:2244–2250

    Article  PubMed  PubMed Central  Google Scholar 

  • Foster M, Spiegel DR (2008) Use of donepezil in the treatment of cognitive impairments of moderate traumatic brain injury. J Neuropsychiatry Clin Neurosci 20:106

    Article  PubMed  Google Scholar 

  • Frisén J, Johansson CB, Török C, Risling M, Lendahl U (1995) Rapid, widespread, and longlasting induction of nestin contributes to the generation of glial scar tissue after CNS injury. J Cell Biol 131:453–464

    Article  PubMed  Google Scholar 

  • Fujiki M, Hikawa T, Abe T, Ishii K, Kobayashi H (2006) Reduced short latency afferent inhibition in diffuse axonal injury patients with memory impairment. Neurosci Lett 405:226–230

    Article  CAS  PubMed  Google Scholar 

  • Fujiki M, Kubo T, Kamida T, Sugita K, Hikawa T, Abe T, Ishii K, Kobayashi H (2008) Neuroprotective and antiamnesic effect of donepezil, a nicotinic acetylcholine-receptor activator, on rats with concussive mild traumatic brain injury. J Clin Neurosci 15:791–796

    Article  CAS  PubMed  Google Scholar 

  • Gage FH, McAllister AK (2005) Neuronal and glial cell biology. Curr Opin Neurobiol 15:497–499

    Article  CAS  PubMed  Google Scholar 

  • Galani R, Hoffman SW, Stein DG (2001) Effects of the duration of progesterone treatment on the resolution of cerebral edema induced by cortical contusions in rats. Restor Neurol Neurosci 18:161–166

    CAS  PubMed  Google Scholar 

  • Garcia-Estrada J, Del Rio JA, Luquin S, Soriano E, Garcia-Segura LM (1993) Gonadal hormones down-regulate reactive gliosis and astrocyte proliferation after a penetrating brain injury. Brain Res 628:271–278

    Article  CAS  PubMed  Google Scholar 

  • García-Estrada J, Luquín S, Fernández AM, Garcia-Segura LM (1999) Dehydroepiandrosterone, pregnenolone and sex steroids down-regulate reactive astroglia in the male rat brain after a penetrating brain injury. Int J Dev Neurosci 17:145–151

    Article  PubMed  Google Scholar 

  • Gensert JM, Goldman JE (1997) Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19:197–203

    Article  CAS  PubMed  Google Scholar 

  • Giacino JT, Whyte J, Bagiella E, Kalmar K, Childs N, Khademi A, Eifert B, Long D, Katz DI, Cho S, Yablon SA, Luther M, Hammond FM, Nordenbo A, Novak P, Mercer W, Maurer-Karattup P, Sherer M (2012) Placebo-controlled trial of amantadine for severe traumatic brain injury. N Engl J Med 366:819–826

    Article  CAS  PubMed  Google Scholar 

  • Gianutsos G, Chute S, Dunn JP (1985) Pharmacological changes in dopaminergic systems induced by long-term administration of amantadine. Eur J Pharmacol 110:357–361

    Article  CAS  PubMed  Google Scholar 

  • Gijtenbeek JM, van den Bent MJ, Vecht CJ (1999) Cyclosporine neurotoxicity: a review. J Neurol 246:339–346

    Article  CAS  PubMed  Google Scholar 

  • Gilmer LK, Roberts KN, Scheff SW (2008) Efficacy of progesterone following a moderate unilateral cortical contusion injury. J Neurotrauma 25:593–602

    Article  PubMed  PubMed Central  Google Scholar 

  • Giordano G, Aimaretti G, Ghigo E (2005) Variations of pituitary function over time after brain injuries: the lesson from a prospective study. Pituitary 8:227–231

    Article  PubMed  Google Scholar 

  • Glenn MB, Wroblewski B, Parziale J, Levine L, Whyte J, Rosenthal M (1989) Lithium carbonate for aggressive behavior or affective instability in ten brain-injured patients. Am J Phys Med Rehabil 68:221–226

    Article  CAS  PubMed  Google Scholar 

  • Global burden of disease estimates. http://www.who.int/healthinfo/bodestimates/en/index.html . Accessed 22 May 2012

  • Goforth PB, Ellis EF, Satin LS (2009) Enhancement of AMPA-mediated current after traumatic injury in cortical neurons. J Neurosci 19:7367–7374

    Google Scholar 

  • Gonzalez FF, McQuillen P, Mu D, Chang Y, Wendland M, Vexler Z, Ferriero DM (2007) Erythropoietin enhances long-term neuroprotection and neurogenesis in neonatal stroke. Dev Neurosci 29:321–330

    Article  CAS  PubMed  Google Scholar 

  • Greve MW, Zink BJ (2009) Pathophysiology of traumatic brain injury. Mount Sinai J Med 76:97–104

    Article  Google Scholar 

  • Grimbert P, Azema C, Pastural M, Dhamane D, Remy P, Salomon L, Schortgen F, Baron C, Lang P (1999) Tacrolimus (FK506)-induced severe and late encephalopathy in a renal transplant recipient. Nephrol Dial Transplant 14:2489–2491

    Article  CAS  PubMed  Google Scholar 

  • Grossman KJ, Goss CW, Stein DG (2004) Effects of progesterone on the inflammatory response to brain injury in the rat. Brain Res 1008:29–39

    Article  CAS  PubMed  Google Scholar 

  • Grossman KJ, Goss CW, Stein DG (2011) Sickness behaviors following medial frontal cortical contusions in male rats. Behav Brain Res 217:202–208

    Article  PubMed  Google Scholar 

  • Gualtieri CT, Evans RW (1988) Stimulant treatment for the neurobehavioural sequelae of traumatic brain injury. Brain Inj 2:273–290

    Article  CAS  PubMed  Google Scholar 

  • Guo Q, Sayeed I, Baronne LM, Hoffman SW, Guennoun R, Stein DG (2006) Progesterone administration modulates AQP4 expression and edema after traumatic brain injury in male rats. Exp Neurol 198:469–478

    Article  CAS  PubMed  Google Scholar 

  • Haas JF, Cope DN (1985) Neuropharmacologic management of behavior sequelae in head injury: a case report. Arch Phys Med Rehabil 66:472–474

    CAS  PubMed  Google Scholar 

  • Hale MS, Donaldson JO (1982) Lithium carbonate in the treatment of organic brain syndrome. J Nerv Ment Dis 170:362–365

    Article  CAS  PubMed  Google Scholar 

  • Hammond GL, Hirvonen J, Vihko R (1983) Progesterone, androstenedione, testosterone, 5 alpha-dihydrotestosterone and androsterone concentrations in specific regions of the human brain. J Steroid Biochem 18:185–189

    Article  CAS  PubMed  Google Scholar 

  • Hanci V, Kerimoğlu A, Koca K, Başkesen A, Kiliç K, Taştekin D (2010) The biochemical effectiveness of N-acetylcysteine in experimental spinal cord injury in rats. Ulus Travma Acil Cerrahi Derg 16:15–21

    PubMed  Google Scholar 

  • Hartley CE, Varma M, Fischer JP, Riccardi R, Strauss JA, Shah S, Zhang S, Yang Z-J (2008) Neuroprotective effects of erythropoietin on acute metabolic and pathological changes in experimentally induced neurotrauma. J Neurosurg 109:708–714

    Article  CAS  PubMed  Google Scholar 

  • Hatton J, Rosbolt B, Empey P, Kryscio R, Young B (2008) Dosing and safety of cyclosporine in patients with severe brain injury. J Neurosurg 109:699–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashida K, Parker R, Eisenach JC (2007) Oral gabapentin activates spinal cholinergic circuits to reduce hypersensitivity after peripheral nerve injury and interacts synergistically with oral donepezil. Anesthesiology 106:1213–1219

    Article  CAS  PubMed  Google Scholar 

  • He J, Evans C-O, Hoffman SW, Oyesiku NM, Stein DG (2004) Progesterone and allopregnanolone reduce inflammatory cytokines after traumatic brain injury. Exp Neurol 189:404–412

    Article  CAS  PubMed  Google Scholar 

  • Heeschen C, Aicher A, Lehmann R, Fichtlscherer S, Vasa M, Urbich C, Mildner-Rihm C, Martin H, Zeiher AM, Dimmeler S (2003) Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 102:1340–1346

    Article  CAS  PubMed  Google Scholar 

  • Herndon DN, Barrow RE, Kunkel KR, Broemeling L, Rutan RL (1990) Effects of recombinant human growth hormone on donor-site healing in severely burned children. Ann Surg 212:424–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hicdonmez T, Kanter M, Tiryaki M, Parsak T, Cobanoglu S (2006) Neuroprotective effects of N-acetylcysteine on experimental closed head trauma in rats. Neurochem Res 31:473–481

    Article  CAS  PubMed  Google Scholar 

  • High WM Jr, Briones-Galang M, Clark JA, Gilkison C, Mossberg KA, Zgaljardic DJ, Masel BE, Urban RJ (2010) Effect of growth hormone replacement therapy on cognition after traumatic brain injury. J Neurotrauma 27:1565–1575

    Article  PubMed  PubMed Central  Google Scholar 

  • Hinzman JM, Thomas TC, Quintero JE, Gerhardt GA, Lifshitz J (2012) Disruptions in the regulation of extracellular glutamate by neurons and glia in the rat striatum two days after diffuse brain injury. J Neurotrauma 29:1197–1208

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffer ME, Balaban C, Slade MD, Tsao JW, Hoffer B (2013) Amelioration of acute sequelae of blast induced mild traumatic brain injury by N-acetyl cysteine: a double-blind, placebo controlled study. PLoS One 8, e54163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homsi S, Piaggio T, Croci N, Noble F, Plotkine M, Marchand-Leroux C, Jafarian-Tehrani M (2010) Blockade of acute microglial activation by minocycline promotes neuroprotection and reduces locomotor hyperactivity after closed head injury in mice: a twelve-week follow-up study. J Neurotrauma 27:911–921

    Article  PubMed  Google Scholar 

  • Hua F, Wang J, Ishrat T, Wei W, Atif F, Sayeed I, Stein DG (2011) Genomic profile of Toll-like receptor pathways in traumatically brain-injured mice: effect of exogenous progesterone. J Neuroinflammation 8:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua F, Reiss JI, Tang H, Wang J, Fowler X, Sayeed I, Stein DG (2012) Progesterone and low-dose vitamin D hormone treatment enhances sparing of memory following traumatic brain injury. Horm Behav 61:642–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iannotti C, Zhang YP, Shields CB, Han Y, Burke DA, Xu XM (2004) A neuroprotective role of glial cell line-derived neurotrophic factor following moderate spinal cord contusion injury. Exp Neurol 189:317–332

    Article  CAS  PubMed  Google Scholar 

  • Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1α/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A 101:18117–18122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Indraswari F, Wang H, Lei B, James ML, Kernagis D, Warner DS, Dawson HN, Laskowitz DT (2012) Statins improve outcome in murine models of intracranial hemorrhage and traumatic brain injury: a translational approach. J Neurotrauma 29:1388–1400

    Article  PubMed  Google Scholar 

  • Jendelová P, Herynek V, Urdzíková L, Glogarová K, Kroupová J, Andersson B, Bryia V, Burian M, Hájek M, Syková E (2004) Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res 76:232–243

    Article  PubMed  CAS  Google Scholar 

  • Jin W, Kong J, Lu T, Wang H, Ni H, Wu J, Dai Y, Jiang J, Liang W (2011) Erythropoietin prevents secondary brain injury induced by cortical lesion in mice: possible involvement of Nrf2 signaling pathway. Ann Clin Lab Sci 41:25–32

    CAS  PubMed  Google Scholar 

  • Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisén J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34

    Article  CAS  PubMed  Google Scholar 

  • Jones NC, Constantin D, Prior MJW, Morris PG, Marsden CA, Murphy S (2005) The neuroprotective effect of progesterone after traumatic brain injury in male mice is independent of both the inflammatory response and growth factor expression. Eur J Neurosci 21:1547–1554

    Article  PubMed  Google Scholar 

  • Jordan BD (2007) Genetic influences on outcome following traumatic brain injury. Neurochem Res 32:905–915

    Article  CAS  PubMed  Google Scholar 

  • Kasturi BS, Stein DG (2009) Progesterone decreases cortical and sub-cortical edema in young and aged ovariectomized rats with brain injury. Restor Neurol Neurosci 27:265–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaye NS, Townsend JB 3rd, Ivins R (2003) An open-label trial of donepezil (aricept) in the treatment of persons with mild traumatic brain injury. J Neuropsychiatry Clin Neurosci 15:383–384

    Article  PubMed  Google Scholar 

  • Kelly DF, Gonzalo IT, Cohan P, Berman N, Swerdloff R, Wang C (2000) Hypopituitarism following traumatic brain injury and aneurysmal subarachnoid hemorrhage: a preliminary report. J Neurosurg 93:743–752

    Article  CAS  PubMed  Google Scholar 

  • Kelso ML, Oestreich JH (2012) Traumatic brain injury: central and peripheral role of α7 nicotinic acetylcholine receptors. Curr Drug Targets 13:631–636

    Article  CAS  PubMed  Google Scholar 

  • Keramaris NC, Kanakaris NK, Tzioupis C, Kontakis G, Giannoudis PV (2008) Translational research: From benchside to bedside. Injury 39:643–650

    Article  CAS  PubMed  Google Scholar 

  • Khateb A, Ammann J, Annoni J-M, Diserens K (2005) Cognition-enhancing effects of donepezil in traumatic brain injury. Eur Neurol 54:39–45

    Article  CAS  PubMed  Google Scholar 

  • Kilbaugh TJ, Bhandare S, Lorom DH, Saraswati M, Robertson CL, Margulies SS (2011) Cyclosporin A preserves mitochondrial function after traumatic brain injury in the immature rat and piglet. J Neurotrauma 28:763–774

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim H-S, Suh Y-H (2009) Minocycline and neurodegenerative diseases. Behav Brain Res 196:168–179

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-H, Ko M-H, Na S-Y, Park S-H, Kim K-W (2006) Effects of single-dose methylphenidate on cognitive performance in patients with traumatic brain injury: a double-blind placebo-controlled study. Clin Rehabil 20:24–30

    Article  PubMed  Google Scholar 

  • Kim J, Whyte J, Patel S, Europa E, Wang J, Coslett HB, Detre JA (2012) Methylphenidate modulates sustained attention and cortical activation in survivors of traumatic brain injury: a perfusion fMRI study. Psychopharmacology (Berl) 222:47–57

    Article  CAS  Google Scholar 

  • Kline AE, Yan HQ, Bao J, Marion DW, Dixon CE (2000) Chronic methylphenidate treatment enhances water maze performance following traumatic brain injury in rats. Neurosci Lett 280:163–166

    Article  CAS  PubMed  Google Scholar 

  • Koda K, Ago Y, Cong Y, Kita Y, Takuma K, Matsuda T (2010) Effects of acute and chronic administration of atomoxetine and methylphenidate on extracellular levels of noradrenaline, dopamine and serotonin in the prefrontal cortex and striatum of mice. J Neurochem 114:259–270

    CAS  PubMed  Google Scholar 

  • Koenig HL, Schumacher M, Ferzaz B, Thi AN, Ressouches A, Guennoun R, Jung-Testas I, Robel P, Akwa Y, Baulieu EE (1995) Progesterone synthesis and myelin formation by Schwann cells. Science 268:1500–1503

    Article  CAS  PubMed  Google Scholar 

  • Kojima A, Tator CH (2000) Epidermal growth factor and fibroblast growth factor 2 cause proliferation of ependymal precursor cells in the adult rat spinal cord in vivo. J Neuropathol Exp Neurol 59:687–697

    Article  CAS  PubMed  Google Scholar 

  • Kojima A, Tator CH (2002) Intrathecal administration of epidermal growth factor and fibroblast growth factor 2 promotes ependymal proliferation and functional recovery after spinal cord injury in adult rats. J Neurotrauma 19:223–238

    Article  PubMed  Google Scholar 

  • Kovesdi E, Kamnaksh A, Wingo D, Ahmed F, Grunberg NE, Long JB, Kasper CE, Agoston DV (2012) Acute minocycline treatment mitigates the symptoms of mild blast-induced traumatic brain injury. Front Neurol 3:111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunte H, Schmidt S, Eliasziw M, del Zoppo GJ, Simard JM, Masuhr F, Weih M, Dirnagl U (2007) Sulfonylureas improve outcome in patients with type 2 diabetes and acute ischemic stroke. Stroke 38:2526–2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacroix C, Fiet J, Benais JP, Gueux B, Bonete R, Villette JM, Gourmel B, Dreux C (1987) Simultaneous radioimmunoassay of progesterone, androst-4-enedione, pregnenolone, dehydroepiandrosterone and 17-hydroxyprogesterone in specific regions of human brain. J Steroid Biochem 28:317–325

    Article  CAS  PubMed  Google Scholar 

  • Lanthier A, Patwardhan VV (1986) Sex steroids and 5-en-3 beta-hydroxysteroids in specific regions of the human brain and cranial nerves. J Steroid Biochem 25:445–449

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Lin CY, Robertson RT, Hsiao I, Lin VW (2004) Motor recovery and anatomical evidence of axonal regrowth in spinal cord-repaired adult rats. J Neuropathol Exp Neurol 63:233–245

    Article  PubMed  Google Scholar 

  • Lee H, Kim S-W, Kim J-M, Shin I-S, Yang S-J, Yoon J-S (2005) Comparing effects of methylphenidate, sertraline and placebo on neuropsychiatric sequelae in patients with traumatic brain injury. Hum Psychopharmacol 20:97–104

    Article  CAS  PubMed  Google Scholar 

  • Leite DFP, Echevarria-Lima J, Calixto JB, Rumjanek VM (2007) Multidrug resistance related protein (ABCC1) and its role on nitrite production by the murine macrophage cell line RAW 264.7. Biochem Pharmacol 73:665–674

    Article  CAS  PubMed  Google Scholar 

  • Li G, Shi P, Wang Y (2007) Evolutionary dynamics of the ABCA chromosome 17q24 cluster genes in vertebrates. Genomics 89:385–391

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wu HM, Zhou RL, Liu GJ, Dong BR (2008) Huperzine A for Alzheimer’s disease. Cochrane Database Syst Rev CD005592

    Google Scholar 

  • Li B, Mahmood A, Lu D, Wu H, Xiong Y, Qu C, Chopp M (2009) Simvastatin attenuates microglial cells and astrocyte activation and decreases interleukin-1beta level after traumatic brain injury. Neurosurgery 65:179–185

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao ZB, Jiang GY, Tang ZH, Zhi XG, Sun XC, Tang WY, Wu MJ (2009) Erythropoietin can promote survival of cerebral cells by downregulating Bax gene after traumatic brain injury in rats. Neurol India 57:722–728

    Article  CAS  PubMed  Google Scholar 

  • Lieberman SA, Oberoi AL, Gilkison CR, Masel BE, Urban RJ (2001) Prevalence of neuroendocrine dysfunction in patients recovering from traumatic brain injury. J Clin Endocrinol Metab 86:2752–2756

    CAS  PubMed  Google Scholar 

  • Liepert J (2008) Pharmacotherapy in restorative neurology. Curr Opin Neurol 21:639–643

    Article  CAS  PubMed  Google Scholar 

  • Lieutaud T, Andrews PJD, Rhodes JKJ, Williamson R (2008) Characterization of the pharmacokinetics of human recombinant erythropoietin in blood and brain when administered immediately after lateral fluid percussion brain injury and its pharmacodynamic effects on IL-1beta and MIP-2 in rats. J Neurotrauma 25:1179–1185

    Article  PubMed  Google Scholar 

  • Lin T, Islam O, Heese K (2006) ABC transporters, neural stem cells and neurogenesis-a different perspective. Cell Res 16:857–871

    Article  CAS  PubMed  Google Scholar 

  • Ling FA, Hui DZ, Ji SM (2007) Protective effect of recombinant human somatotropin on amyloid beta-peptide induced learning and memory deficits in mice. Growth Horm IGF Res 17:336–341

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wang J, Zhao L, Nilsen J, McClure K, Wong K, Brinton RD (2009) Progesterone increases rat neural progenitor cell cycle gene expression and proliferation via extracellularly regulated kinase and progesterone receptor membrane components 1 and 2. Endocrinology 150:3186–3196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loane DJ, Faden AI (2010) Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol Sci 31:596–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lok J, Leung W, Zhao S, Pallast S, van Leyen K, Guo S, Wang X, Yalcin A, Lo EH (2011) Gamma-glutamylcysteine ethyl ester protects cerebral endothelial cells during injury and decreases blood–brain barrier permeability after experimental brain trauma. J Neurochem 118:248–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardi F (2008) Pharmacological treatment of neurobehavioural sequelae of traumatic brain injury. Eur J Anaesthesiol Suppl 42:131–136

    Article  CAS  PubMed  Google Scholar 

  • Lu D, Goussev A, Chen J, Pannu P, Li Y, Mahmood A, Chopp M (2004a) Atorvastatin reduces neurological deficit and increases synaptogenesis, angiogenesis, and neuronal survival in rats subjected to traumatic brain injury. J Neurotrauma 21:21–32

    Article  PubMed  Google Scholar 

  • Lu D, Mahmood A, Goussev A, Schallert T, Qu C, Zhang ZG, Li Y, Lu M, Chopp M (2004b) Atorvastatin reduction of intravascular thrombosis, increase in cerebral microvascular patency and integrity, and enhancement of spatial learning in rats subjected to traumatic brain injury. J Neurosurg 101:813–821

    Article  CAS  PubMed  Google Scholar 

  • Lu D, Mahmood A, Qu C, Goussev A, Lu M, Chopp M (2004c) Atorvastatin reduction of intracranial hematoma volume in rats subjected to controlled cortical impact. J Neurosurg 101:822–825

    Article  PubMed  Google Scholar 

  • Lu D, Mahmood A, Qu C, Goussev A, Schallert T, Chopp M (2005) Erythropoietin enhances neurogenesis and restores spatial memory in rats after traumatic brain injury. J Neurotrauma 22:1011–1017

    Article  PubMed  Google Scholar 

  • Lu D, Qu C, Goussev A, Jiang H, Lu C, Schallert T, Mahmood A, Chen J, Li Y, Chopp M (2007) Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J Neurotrauma 24:1132–1146

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo X, Cen Y, Yu R, Zhao J (2000) Effectiveness of recombinant human growth hormone treatment for severe burn injury. Hua Xi Yi Ke Da Xue Xue Bao 31:399–401

    CAS  PubMed  Google Scholar 

  • Luoma JI, Kelley BG, Mermelstein PG (2011) Progesterone inhibition of voltage-gated calcium channels is a potential neuroprotective mechanism against excitotoxicity. Steroids 76:845–855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luoma JI, Stern CM, Mermelstein PG (2012) Progesterone inhibition of neuronal calcium signaling underlies aspects of progesterone-mediated neuroprotection. J Steroid Biochem Mol Biol 131:30–36

    Article  CAS  PubMed  Google Scholar 

  • Luskin MB, Zigova T, Soteres BJ, Stewart RR (1996) Neuronal progenitor cells derived from the anterior subventricular zone of the neonatal rat forebrain continue to proliferate in vitro and express a neuronal phenotype. Mol Cell Neurosci 8:351–366

    Article  Google Scholar 

  • Maas AIR (2001) Neuroprotective agents in traumatic brain injury. Expert Opin Investig Drugs 10:753–767

    Article  CAS  PubMed  Google Scholar 

  • Mahalick DM, Carmel PW, Greenberg JP, Molofsky W, Brown JA, Heary RF, Marks D, Zampella E, Hodosh R, von der Schmidt E 3rd (1998) Psychopharmacologic treatment of acquired attention disorders in children with brain injury. Pediatr Neurosurg 29:121–126

    Article  CAS  PubMed  Google Scholar 

  • Mammis A, McIntosh TK, Maniker AH (2009) Erythropoietin as a neuroprotective agent in traumatic brain injury. Surg Neurol 71:527–531

    Article  PubMed  Google Scholar 

  • Marsteller DA, Gerasimov MR, Schiffer WK, Geiger JM, Barnett CR, Schaich Borg J, Scott S, Ceccarelli J, Volkow ND, Molina PE, Alexoff DL, Dewey SL (2002) Acute handling stress modulates methylphenidate-induced catecholamine overflow in the medial prefrontal cortex. Neuropsychopharmacology 27:163–170

    Article  CAS  PubMed  Google Scholar 

  • Martens DJ, Seaberg RM, van der Kooy D (2002) In vivo infusions of exogenous growth factors into the fourth ventricle of the adult mouse brain increase the proliferation of neural progenitors around the fourth ventricle and the central canal of the spinal cord. Eur J Neurosci 16:1045–1057

    Article  PubMed  Google Scholar 

  • Masanic CA, Bayley MT, VanReekum R, Simard M (2001) Open-label study of donepezil in traumatic brain injury. Arch Phys Med Rehabil 82:896–901

    Article  CAS  PubMed  Google Scholar 

  • Mazzeo AT, Kunene NK, Gilman CB, Hamm RJ, Hafez N, Bullock MR (2006) Severe human traumatic brain injury, but not cyclosporin a treatment, depresses activated T lymphocytes early after injury. J Neurotrauma 23:962–975

    Article  PubMed  Google Scholar 

  • Mazzeo AT, Alves OL, Gilman CB, Hayes RL, Tolias C, Niki Kunene K, Ross Bullock M (2008) Brain metabolic and hemodynamic effects of cyclosporin A after human severe traumatic brain injury: a microdialysis study. Acta Neurochir (Wien) 150:1019–1031

    Article  Google Scholar 

  • Mazzeo AT, Brophy GM, Gilman CB, Alves OL, Robles JR, Hayes RL, Povlishock JT, Bullock MR (2009) Safety and tolerability of cyclosporin A in severe traumatic brain injury patients: results from a prospective randomized trial. J Neurotrauma 26:2195–2206

    Article  PubMed  PubMed Central  Google Scholar 

  • Mbye LHAN, Singh IN, Carrico KM, Saatman KE, Hall ED (2009) Comparative neuroprotective effects of cyclosporin A and NIM811, a nonimmunosuppressive cyclosporin A analog, following traumatic brain injury. J Cereb Blood Flow Metab 29:87–97

    Article  CAS  PubMed  Google Scholar 

  • McLean A Jr, Stanton KM, Cardenas DD, Bergerud DB (1987) Memory training combined with the use of oral physostigmine. Brain Inj 1:145–159

    Article  PubMed  Google Scholar 

  • Meythaler JM, Brunner RC, Johnson A, Novack TA (2002) Amantadine to improve neurorecovery in traumatic brain injury-associated diffuse axonal injury: a pilot double-blind randomized trial. J Head Trauma Rehabil 17:300–313

    Article  PubMed  Google Scholar 

  • Miskowiak KW, Vinberg M, Harmer CJ, Ehrenreich H, Knudsen GM, Macoveanu J, Hansen AR, Paulson OB, Siebner HR, Kessing LV (2010) Effects of erythropoietin on depressive symptoms and neurocognitive deficits in depression and bipolar disorder. Trials 11:97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moein H, Khalili HA, Keramatian K (2006) Effect of methylphenidate on ICU and hospital length of stay in patients with severe and moderate traumatic brain injury. Clin Neurol Neurosurg 108:539–542

    Article  PubMed  Google Scholar 

  • Moeller SJ, Honorio J, Tomasi D, Parvaz MA, Woicik PA, Volkow ND, Goldstein RZ (2012) Methylphenidate enhances executive function and optimizes prefrontal function in both health and cocaine addiction. Cereb Cortex. doi:10.1093/cercor/bhs345

    PubMed Central  Google Scholar 

  • Mohapel P, Brundin P (2004) Harnessing endogenous stem cells to treat neurodegenerative disorders of the basal ganglia. Parkinsonism Relat Disord 10:259–264

    Article  PubMed  Google Scholar 

  • Mooney GF, Haas LJ (1993) Effect of methylphenidate on brain injury-related anger. Arch Phys Med Rehabil 74:153–160

    CAS  PubMed  Google Scholar 

  • Morey CE, Cilo M, Berry J, Cusick C (2003) The effect of Aricept in persons with persistent memory disorder following traumatic brain injury: a pilot study. Brain Inj 17:809–815

    Article  PubMed  Google Scholar 

  • Nakamura M, Houghtling RA, MacArthur L, Bayer BM, Bregman BS (2003) Differences in cytokine gene expression profile between acute and secondary injury in adult rat spinal cord. Exp Neurol 184:313–325

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Okada S, Toyama Y, Okano H (2005) Role of IL-6 in spinal cord injury in a mouse model. Clin Rev Allergy Immunol 28:197–203

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Yanagisawa M, Arakawa H, Kimura N, Hisatsune T, Kawabata M, Miyazono K, Taga T (1999) Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 284:479–482

    Article  CAS  PubMed  Google Scholar 

  • Namiki J, Kojima A, Tator CH (2000) Effect of brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 on functional recovery and regeneration after spinal cord injury in adult rats. J Neurotrauma 17:1219–1231

    Article  CAS  PubMed  Google Scholar 

  • Nawashiro H, Shima K, Chigasaki H (1994) Blood–brain barrier, cerebral blood flow, and cerebral plasma volume immediately after head injury in the rat. Acta Neurochir 60(Suppl):440–442

    CAS  Google Scholar 

  • Noble JM, Hauser WA (2007) Effects of rivastigmine on cognitive function in patients with traumatic brain injury. Neurology 68:1749

    Article  PubMed  Google Scholar 

  • Nori S, Tsuji O, Okada Y, Toyama Y, Okano H, Nakamura M (2012) Therapeutic potential of induced pluripotent stem cells for spinal cord injury. Brain Nerve 64:17–27

    CAS  PubMed  Google Scholar 

  • O’Connor CA, Cernak I, Johnson F, Vink R (2007) Effects of progesterone on neurologic and morphologic outcome following diffuse traumatic brain injury in rats. Exp Neurol 205:145–153

    Article  PubMed  CAS  Google Scholar 

  • Oda Y, Gao G, Wei EP, Povlishock JT (2011) Combinational therapy using hypothermia and the immunophilin ligand FK506 to target altered pial arteriolar reactivity, axonal damage, and blood–brain barrier dysfunction after traumatic brain injury in rat. J Cereb Blood Flow Metab 31:1143–1154

    Article  CAS  PubMed  Google Scholar 

  • Ogawa Y, Sawamoto K, Miyata T, Miyao S, Watanabe M, Nakamura M, Bregman BS, Koike M, Uchiyama Y, Toyama Y, Okano H (2002) Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J Neurosci Res 69:925–933

    Article  CAS  PubMed  Google Scholar 

  • Okada S, Nakamura M, Mikami Y, Shimazaki T, Mihara M, Ohsugi Y, Iwamoto Y, Yoshizaki K, Kishimoto T, Toyama Y, Okano H (2004) Blockade of interleukin-6 receptor suppresses reactive astrogliosis and ameliorates functional recovery in experimental spinal cord injury. J Neurosci Res 76:265–276

    Article  CAS  PubMed  Google Scholar 

  • Okano H, Ogawa Y, Nakamura M, Kaneko S, Iwanami A, Toyama Y (2003) Transplantation of neural stem cells into the spinal cord after injury. Semin Cell Dev Biol 14:191–198

    Article  CAS  PubMed  Google Scholar 

  • Okano H, Okada S, Nakamura M, Toyama Y (2005) Neural stem cells and regeneration of injured spinal cord. Kidney Int 68:1927–1931

    Article  CAS  PubMed  Google Scholar 

  • Okonkwo DO, Povlishock JT (1999) An intrathecal bolus of cyclosporin A before injury preserves mitochondrial integrity and attenuates axonal disruption in traumatic brain injury. J Cereb Blood Flow Metab 19:443–451

    Article  CAS  PubMed  Google Scholar 

  • Okonkwo DO, Melon DE, Pellicane AJ, Mutlu LK, Rubin DG, Stone JR, Helm GA (2003) Dose–response of cyclosporin A in attenuating traumatic axonal injury in rat. Neuroreport 14:463–466

    Article  CAS  PubMed  Google Scholar 

  • Oliva AA, Kang Y, Sanchez-Molano J, Furones C, Atkins CM (2012) STAT3 signaling after traumatic brain injury. J Neurochem 120:710–720

    Article  CAS  PubMed  Google Scholar 

  • Olive MF, Cleva RM, Kalivas PW, Malcolm RJ (2012) Glutamatergic medications for the treatment of drug and behavioral addictions. Pharmacol Biochem Behav 100:801–810

    Article  CAS  PubMed  Google Scholar 

  • Ortega FJ, Gimeno-Bayon J, Espinosa-Parrilla JF, Carrasco JL, Batlle M, Pugliese M, Mahy N, Rodríguez MJ (2012) ATP-dependent potassium channel blockade strengthens microglial neuroprotection after hypoxia-ischemia in rats. Exp Neurol 235:282–296

    Article  CAS  PubMed  Google Scholar 

  • Oztürk E, Demirbilek S, Köroğlu A, But A, Begeç ZO, Gülec M, Akyol O, Ersoy MO (2008) Propofol and erythropoietin antioxidant properties in rat brain injured tissue. Prog Neuropsychopharmacol Biol Psychiatry 32:81–86

    Article  PubMed  CAS  Google Scholar 

  • Pan D-S, Liu W-G, Yang X-F, Cao F (2007) Inhibitory effect of progesterone on inflammatory factors after experimental traumatic brain injury. Biomed Environ Sci 20:432–438

    CAS  PubMed  Google Scholar 

  • Parmelee DX, O’Shanick GJ (1988) Carbamazepine-lithium toxicity in brain-damaged adolescents. Brain Inj 2:305–308

    Article  CAS  PubMed  Google Scholar 

  • Patel AD, Gerzanich V, Geng Z, Simard JM (2010) Glibenclamide reduces hippocampal injury and preserves rapid spatial learning in a model of traumatic brain injury. J Neuropathol Exp Neurol 69:1177–1190

    Article  CAS  PubMed  Google Scholar 

  • Peterson TC, Anderson GD, Kantor ED, Hoane MR (2012) A comparison of the effects of nicotinamide and progesterone on functional recovery of cognitive behavior following cortical contusion injury in the rat. J Neurotrauma 29:2823–2830

    Article  PubMed  PubMed Central  Google Scholar 

  • Pettus EH, Wright DW, Stein DG, Hoffman SW (2005) Progesterone treatment inhibits the inflammatory agents that accompany traumatic brain injury. Brain Res 1049:112–119

    Article  CAS  PubMed  Google Scholar 

  • Pevny L, Placzek M (2005) SOX genes and neural progenitor identity. Curr Opin Neurobiol 15:7–13

    Article  CAS  PubMed  Google Scholar 

  • Piilgaard H, Witgen BM, Rasmussen P, Lauritzen M (2011) Cyclosporine A, FK506, and NIM811 ameliorate prolonged CBF reduction and impaired neurovascular coupling after cortical spreading depression. J Cereb Blood Flow Metab 31:1588–1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pincus DW, Goodman RR, Fraser RAR, Nedergaard M, Goldman SA (1998) Neural stem and progenitor cells: a strategy for gene therapy and brain repair. Neurosurgery 42:858–868

    Article  CAS  PubMed  Google Scholar 

  • Plenger PM, Dixon CE, Castillo RM, Frankowski RF, Yablon SA, Levin HS (1996) Subacute methylphenidate treatment for moderate to moderately severe traumatic brain injury: a preliminary double-blind placebo-controlled study. Arch Phys Med Rehabil 77:536–540

    Article  CAS  PubMed  Google Scholar 

  • Porcu P, O’Buckley TK, Alward SE, Marx CE, Shampine LJ, Girdler SS, Morrow AL (2009) Simultaneous quantification of GABAergic 3alpha, 5alpha/3alpha, 5beta neuroactive steroids in human and rat serum. Steroids 74:463–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potapov AA, Iusupova MM, Tendieva VD, Nikitin AG, Nosikov VV (2010) Clinical and prognostic significance of genetic markers of ApoE gene in traumatic brain injury. Zh Vopr Neirokhir Im N N Burdenko 3:54–62

    Google Scholar 

  • Povlishock JT (1992) Traumatically induced axonal injury: pathogenesis and pathobiological implications. Brain Pathol 1:1–12

    Google Scholar 

  • Rabchevsky AG, Fugaccia I, Turner AF, Blades DA, Mattson MP, Scheff SW (2000) Basic fibroblast growth factor (bFGF) enhances functional recovery following severe spinal cord injury to the rat. Exp Neurol 164:280–291

    Article  CAS  PubMed  Google Scholar 

  • Racette B (2008) A pilot clinical trial of creatine and minocycline in early Parkinson disease: 18-month results. Clin Neuropharmacol 31:141–150

    Article  CAS  Google Scholar 

  • Reid WM, Hamm RJ (2008) Post-injury atomoxetine treatment improves cognition following experimental traumatic brain injury. J Neurotrauma 25:248–256

    Article  PubMed  Google Scholar 

  • Reimunde P, Quintana A, Castañón B, Casteleiro N, Vilarnovo Z, Otero A, Devesa A, Otero-Cepeda XL, Devesa J (2011) Effects of growth hormone (GH) replacement and cognitive rehabilitation in patients with cognitive disorders after traumatic brain injury. Brain Inj 25:65–73

    Article  CAS  PubMed  Google Scholar 

  • Rhodes JKJ, Sharkey J, Andrews PJD (2009) The temporal expression, cellular localization, and inhibition of the chemokines MIP-2 and MCP-1 after traumatic brain injury in the rat. J Neurotrauma 26:507–525

    Article  PubMed  Google Scholar 

  • Robertson CL, Puskar A, Hoffman GE, Murphy AZ, Saraswati M, Fiskum G (2006) Physiologic progesterone reduces mitochondrial dysfunction and hippocampal cell loss after traumatic brain injury in female rats. Exp Neurol 197:235–243

    Article  CAS  PubMed  Google Scholar 

  • Roof RL, Duvdevani R, Stein DG (1992) Progesterone treatment attenuates brain edema following contusion injury in male and female rats. Restor Neurol Neurosci 4:425–427

    CAS  PubMed  Google Scholar 

  • Roof RL, Duvdevani R, Braswell L, Stein DG (1994) Progesterone facilitates cognitive recovery and reduces secondary neuronal loss caused by cortical contusion injury in male rats. Exp Neurol 129:64–69

    Article  CAS  PubMed  Google Scholar 

  • Roof RL, Duvdevani R, Heyburn JW, Stein DG (1996) Progesterone rapidly decreases brain edema: treatment delayed up to 24 hours is still effective. Exp Neurol 138:246–251

    Article  CAS  PubMed  Google Scholar 

  • Roof RL, Hoffman SW, Stein DG (1997) Progesterone protects against lipid peroxidation following traumatic brain injury in rats. Mol Chem Neuropathol 31:1–11

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg LJ, Zai LJ, Wrathall JR (2005) Chronic alterations in the cellular composition of spinal cord white matter following contusion injury. Glia 49:107–120

    Article  PubMed  Google Scholar 

  • Saatman KE, Contreras PC, Smith DH, Raghupathi R, McDermott KL, Fernandez SC, Sanderson KL, Voddi M, McIntosh TK (1997) Insulin-like growth factor-1 (IGF-1) improves both neurological motor and cognitive outcome following experimental brain injury. Exp Neurol 147:418–427

    Article  CAS  PubMed  Google Scholar 

  • Sacktor N, Miyahara S, Deng L, Evans S, Schifitto G, Cohen BA, Paul R, Robertson K, Jarocki B, Scarsi K, Coombs RW, Zink MC, Nath A, Smith E, Ellis RJ, Singer E, Weihe J, McCarthy S, Hosey L, Clifford DB (2011) Minocycline treatment for HIV-associated cognitive impairment: results from a randomized trial. Neurology 77:1135–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saganová K, Gálik J, Blaško J, Korimová A, Račeková E, Vanický I (2012) Immunosuppressant FK506: focusing on neuroprotective effects following brain and spinal cord injury. Life Sci 91:77–82

    Article  PubMed  CAS  Google Scholar 

  • Saito T, Yamada K, Wang Y, Tanaka Y, Ohtomo K, Ishikawa K, Inagaki N (2007) Expression of ABCA2 protein in both non-myelin-forming and myelin-forming Schwann cells in the rodent peripheral nerve. Neurosci Lett 414:35–40

    Article  CAS  PubMed  Google Scholar 

  • Sanchez Mejia RO, Ona VO, Li M, Friedlander RM (2001) Minocycline reduces traumatic brain injury-mediated caspase-1 activation, tissue damage, and neurological dysfunction. Neurosurgery 48:1393–1399

    CAS  PubMed  Google Scholar 

  • Sanders EJ, Parker E, Harvey S (2008) Growth hormone-mediated survival of embryonic retinal ganglion cells: signaling mechanisms. Gen Comp Endocrinol 156:613–621

    Article  CAS  PubMed  Google Scholar 

  • Sanders EJ, Lin W-Y, Parker E, Harvey S (2010) Growth hormone expression and neuroprotective activity in a quail neural retina cell line. Gen Comp Endocrinol 165:111–119

    Article  CAS  PubMed  Google Scholar 

  • Sarkaki AR, Khaksari M, Soltani Z, Shahrokhi N, Mahmoodi M (2013) Time- and dose-dependent neuroprotective effects of sex steroid hormones on inflammatory cytokines after a traumatic brain injury. J Neurotrauma 30:47–54

    Article  PubMed  Google Scholar 

  • Sayeed I, Guo Q, Hoffman SW, Stein DG (2006) Allopregnanolone, a progesterone metabolite, is more effective than progesterone in reducing cortical infarct volume after transient middle cerebral artery occlusion. Ann Emerg Med 47:381–389

    Article  PubMed  Google Scholar 

  • Sayeed I, Parvez S, Wali B, Siemen D, Stein DG (2009) Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism for better neuroprotective effects of allopregnanolone over progesterone. Brain Res 1263:165–173

    Article  CAS  PubMed  Google Scholar 

  • Scheff SW, Sullivan PG (1999) Cyclosporin A significantly ameliorates cortical damage following experimental traumatic brain injury in rodents. J Neurotrauma 16:783–792

    Article  CAS  PubMed  Google Scholar 

  • Schiff HB, Sabin TD, Geller A, Alexander L, Mark V (1982) Lithium in aggressive behavior. Am J Psychiatry 139:1346–1348

    Article  CAS  PubMed  Google Scholar 

  • Schneider WN, Drew-Cates J, Wong TM, Dombovy ML (1999) Cognitive and behavioural efficacy of amantadine in acute traumatic brain injury: an initial double-blind placebo-controlled study. Brain Inj 13:863–872

    Article  CAS  PubMed  Google Scholar 

  • Setkowicz Z, Guzik R (2007) Injections of vehicle, but not cyclosporin A or tacrolimus (FK506), afford neuroprotection following injury in the developing rat brain. Acta Neurobiol Exp (Wars) 67:399–409

    Google Scholar 

  • Shahrokhi N, Khaksari M, Soltani Z, Mahmoodi M, Nakhaee N (2010) Effect of sex steroid hormones on brain edema, intracranial pressure, and neurologic outcomes after traumatic brain injury. Can J Physiol Pharmacol 88:414–421

    Article  CAS  PubMed  Google Scholar 

  • Shahrokhi N, Haddad MK, Joukar S, Shabani M, Keshavarzi Z, Shahozehi B (2012) Neuroprotective antioxidant effect of sex steroid hormones in traumatic brain injury. Pak J Pharm Sci 25:219–225

    CAS  PubMed  Google Scholar 

  • Shapira M, Licht A, Milman A, Pick CG, Shohami E, Eldar-Finkelman H (2007) Role of glycogen synthase kinase-3beta in early depressive behavior induced by mild traumatic brain injury. Mol Cell Neurosci 34:571–577

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS (2003) Neurotrophic factors attenuate microvascular permeability disturbances and axonal injury following trauma to the rat spinal cord. Acta Neurochir 86(Suppl):383–388

    CAS  Google Scholar 

  • Sharov VG, Todor A, Khanal S, Imai M, Sabbah HN (2007) Cyclosporine A attenuates mitochondrial permeability transition and improves mitochondrial respiratory function in cardiomyocytes isolated from dogs with heart failure. J Mol Cell Cardiol 42:150–158

    Article  CAS  PubMed  Google Scholar 

  • Sierra S, Ramos MC, Molina P, Esteo C, Vázquez JA, Burgos JS (2011) Statins as neuroprotectants: a comparative in vitro study of lipophilicity, blood–brain-barrier penetration, lowering of brain cholesterol, and decrease of neuron cell death. J Alzheimers Dis 23:307–318

    CAS  PubMed  Google Scholar 

  • Signoretti S, Marmarou A, Tavazzi B, Dunbar J, Amorini AM, Lazzarino G, Vagnozzi R (2004) The protective effect of cyclosporin A upon N-acetylaspartate and mitochondrial dysfunction following experimental diffuse traumatic brain injury. J Neurotrauma 21:1154–1167

    Article  PubMed  Google Scholar 

  • Silver J, Koumaras B, Chen M, Mirski D, Potkin SG, Reyes P, Warden D, Harvey PD, Arciniegas D, Katz DI, Gunay I (2006) Effects of rivastigmine on cognitive function in patients with traumatic brain injury. Neurology 67:748–755

    Article  CAS  PubMed  Google Scholar 

  • Silver J, Koumaras B, Meng X, Potkin SG, Reyes PF, Harvey PD, Katz DI, Gunay I, Arciniegas DB (2009) Long-term effects of rivastigmine capsules in patients with traumatic brain injury. Brain Inj 23:123–132

    Article  PubMed  Google Scholar 

  • Simard JM, Kilbourne M, Tsymbalyuk O, Tosun C, Caridi J, Ivanova S, Keledjian K, Bochicchio G, Gerzanich V (2009) Key role of sulfonylurea receptor 1 in progressive secondary hemorrhage after brain contusion. J Neurotrauma 26:2257–2267

    Article  PubMed  PubMed Central  Google Scholar 

  • Simard JM, Woo SK, Schwartzbauer GT, Gerzanich V (2012) Sulfonylurea receptor 1 in central nervous system injury: a focused review. J Cereb Blood Flow Metab 32:1699–1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singleton RH, Stone JR, Okonkwo DO, Pellicane AJ, Povlishock JT (2001) The immunophilin ligand FK506 attenuates axonal injury in an impact-acceleration model of traumatic brain injury. J Neurotrauma 18:607–614

    Article  CAS  PubMed  Google Scholar 

  • Speech TJ, Rao SM, Osmon DC, Sperry LT (1993) A double-blind controlled study of methylphenidate treatment in closed head injury. Brain Inj 7:333–338

    Article  CAS  PubMed  Google Scholar 

  • Stoffel M, Rinecker M, Plesnila N, Eriskat J, Baethmann A (2001) Role of nitric oxide in the secondary expansion of a cortical brain lesion from cold injury. J Neurotrauma 18:425–434

    Article  CAS  PubMed  Google Scholar 

  • Stoica B, Byrnes K, Faden AI (2009) Multifunctional drug treatment in neurotrauma. Neurotherapeutics 6:14–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoof JC, Booij J, Drukarch B (1992) Amantadine as N-methyl-D-aspartic acid receptor antagonist: new possibilities for therapeutic applications? Clin Neurol Neurosurg 94 Suppl:S4–S6

    Article  CAS  PubMed  Google Scholar 

  • Suehiro E, Povlishock JT (2001) Exacerbation of traumatically induced axonal injury by rapid posthypothermic rewarming and attenuation of axonal change by cyclosporin A. J Neurosurg 94:493–498

    Article  CAS  PubMed  Google Scholar 

  • Sugden SG, Kile SJ, Farrimond DD, Hilty DM, Bourgeois JA (2006) Pharmacological intervention for cognitive deficits and aggression in frontal lobe injury. NeuroRehabilitation 21:3–7

    PubMed  Google Scholar 

  • Sullivan PG, Thompson MB, Scheff SW (1999) Cyclosporin A attenuates acute mitochondrial dysfunction following traumatic brain injury. Exp Neurol 160:226–234

    Article  CAS  PubMed  Google Scholar 

  • Sullivan PG, Thompson M, Scheff SW (2000a) Continuous infusion of cyclosporin A postinjury significantly ameliorates cortical damage following traumatic brain injury. Exp Neurol 161:631–637

    Article  CAS  PubMed  Google Scholar 

  • Sullivan PG, Rabchevsky AG, Hicks RR, Gibson TR, Fletcher-Turner A, Scheff SW (2000b) Dose–response curve and optimal dosing regimen of cyclosporin A after traumatic brain injury in rats. Neuroscience 101:289–295

    Article  CAS  PubMed  Google Scholar 

  • Sullivan PG, Sebastian AH, Hall ED (2011) Therapeutic window analysis of the neuroprotective effects of cyclosporine A after traumatic brain injury. J Neurotrauma 28:311–318

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Nadal-Vicens M, Misono S, Lin MZ, Zubiaga A, Hua X, Fan G, Greenberg ME (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104:365–376

    Article  CAS  PubMed  Google Scholar 

  • Svensson J, Diez M, Engel J, Wass C, Tivesten A, Jansson J-O, Isaksson O, Archer T, Hökfelt T, Ohlsson C (2006) Endocrine, liver-derived IGF-I is of importance for spatial learning and memory in old mice. J Endocrinol 189:617–627

    Article  CAS  PubMed  Google Scholar 

  • Swanson CJ, Perry KW, Koch-Krueger S, Katner J, Svensson KA, Bymaster FP (2006) Effect of the attention deficit/hyperactivity disorder drug atomoxetine on extracellular concentrations of norepinephrine and dopamine in several brain regions of the rat. Neuropharmacology 50:755–760

    Article  CAS  PubMed  Google Scholar 

  • Takala J, Ruokonen E, Webster NR, Nielsen MS, Zandstra DF, Vundelinckx G, Hinds CJ (1999) Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med 341:785–792

    Article  CAS  PubMed  Google Scholar 

  • Tamura A, Wakabayashi K, Onishi Y, Nakagawa H, Tsuji M, Matsuda Y, Ishikawa T (2006) Genetic polymorphisms of human ABC transporter ABCG2: development of the standard method for functional validation of SNPs by using the Flp recombinase system. J Exp Ther Oncol 6:1–11

    CAS  PubMed  Google Scholar 

  • Taverni JP, Seliger G, Lichtman SW (1998) Donepezil medicated memory improvement in traumatic brain injury during post acute rehabilitation. Brain Inj 12:77–80

    Article  CAS  PubMed  Google Scholar 

  • Tenovuo O (2005) Central acetylcholinesterase inhibitors in the treatment of chronic traumatic brain injury-clinical experience in 111 patients. Prog Neuropsychopharmacol Biol Psychiatry 29:61–67

    Article  CAS  PubMed  Google Scholar 

  • Tenovuo O, Alin J, Helenius H (2009) A randomized controlled trial of rivastigmine for chronic sequels of traumatic brain injury-what it showed and taught? Brain Inj 23:548–558

    Article  PubMed  Google Scholar 

  • Thomale U-W, Griebenow M, Kroppenstedt S-N, Unterberg AW, Stover JF (2006) The effect of N-acetylcysteine on posttraumatic changes after controlled cortical impact in rats. Intensive Care Med 32:149–155

    Article  CAS  PubMed  Google Scholar 

  • Thum T, Hoeber S, Froese S, Klink I, Stichtenoth DO, Galuppo P, Jakob M, Tsikas D, Anker SD, Poole-Wilson PA, Borlak J, Ertl G, Bauersachs J (2007) Age-dependent impairment of endothelial progenitor cells is corrected by growth-hormone-mediated increase of insulin-like growth-factor-1. Circ Res 100:434–443

    Article  CAS  PubMed  Google Scholar 

  • Trovato M, Slomine B, Pidcock F, Christensen J (2006) The efficacy of donepezil hydrochloride on memory functioning in three adolescents with severe traumatic brain injury. Brain Inj 20:339–343

    Article  PubMed  Google Scholar 

  • Tseng M-Y, Hutchinson PJ, Richards HK, Czosnyka M, Pickard JD, Erber WN, Brown S, Kirkpatrick PJ (2009) Acute systemic erythropoietin therapy to reduce delayed ischemic deficits following aneurysmal subarachnoid hemorrhage: a Phase II randomized, double-blind, placebo-controlled trial. Clinical article. J Neurosurg 111:171–180

    Article  CAS  PubMed  Google Scholar 

  • Tu J, Liao J, Stoodley AM, Cunningham AM (2010) Differentiation of endogenous progenitors in an animal model of post-traumatic syringomyelia. Spine 35:1116–1121

    Article  PubMed  Google Scholar 

  • Tu J, Liao J, Stoodley AM, Cunningham A (2011) Reaction of endogenous progenitor cells in a rat model of posttraumatic syringomyelia. J Neurosurg Spine 14:573–582

    Article  PubMed  Google Scholar 

  • Turkoglu OF, Eroglu H, Gurcan O, Bodur E, Sargon MF, Oner L, Beskonakli E (2010) Local administration of chitosan microspheres after traumatic brain injury in rats: a new challenge for cyclosporine – a delivery. Br J Neurosurg 24:578–583

    Article  PubMed  Google Scholar 

  • Ugoya SO, Akinyemi RO (2010) The place of l-dopa/carbidopa in persistent vegetative state. Clin Neuropharmacol 33:79–84

    Article  CAS  Google Scholar 

  • Ugoya SO, Tu J (2012) Bench to bedside of neural stem cell in traumatic brain injury. Stem Cells Int 141624:8 p. doi:10.1155/2012/141624

  • Urban RJ (2006) Hypopituitarism after acute brain injury. Growth Horm IGF Res 16 Suppl A:S25–S29

    Article  PubMed  CAS  Google Scholar 

  • Valable S, Francony G, Bouzat P, Fevre MC, Mahious N, Bouet V, Farion R, Barbier E, Lahrech H, Remy C, Petit E, Segebarth C, Bermaudin M, Payen JF (2010) The impact of erythropoietin on short-term changes in phosphorylation of brain protein kinases in a rat model of traumatic brain injury. J Cereb Blood Flow Metab 30:361–369

    Article  CAS  PubMed  Google Scholar 

  • Van Den Heuvel C, Donkin JJ, Finnie JW, Blumbergs PC, Kuchel T, Koszyca B, Manavis J, Jones NR, Reilly PL, Vink R (2004) Downregulation of amyloid precursor protein (APP) expression following post-traumatic cyclosporin-A administration. J Neurotrauma 21:1562–1572

    Article  Google Scholar 

  • VanLandingham JW, Cekic M, Cutler S, Hoffman SW, Stein DG (2007) Neurosteroids reduce inflammation after TBI through CD55 induction. Neurosci Lett 425:94–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdonck O, Lahrech H, Francony G, Carle O, Farion R, Van de Looij Y, Remy C, Segebarth C, Payen J-F (2007) Erythropoietin protects from post-traumatic edema in the rat brain. J Cereb Blood Flow Metab 27:1369–1376

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Gatley SJ, Logan J, Ding YS, Hitzemann R, Pappas N (1998) Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate. Am J Psychiatry 155:1325–1331

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Wang G, Fowler JS, Logan J, Gerasimov M, Maynard L, Ding Y, Gatley SJ, Gifford A, Franceschi D (2001) Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci 21:RC121

    CAS  PubMed  Google Scholar 

  • Volkow ND, Fowler JS, Wang G, Ding Y, Gatley SJ (2002a) Mechanism of action of methylphenidate: insights from PET imaging studies. J Atten Disord 6(Suppl 1):S31–S43

    PubMed  Google Scholar 

  • Volkow ND, Wang G-J, Fowler JS, Logan J, Franceschi D, Maynard L, Ding Y-S, Gatley SJ, Gifford A, Zhu W, Swanson JM (2002b) Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications. Synapse 43:181–187

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Wang G-J, Tomasi D, Kollins SH, Wigal TL, Newcorn JH, Telang FW, Fowler JS, Logan J, Wong CT, Swanson JM (2012) Methylphenidate-elicited dopamine increases in ventral striatum are associated with long-term symptom improvement in adults with attention deficit hyperactivity disorder. J Neurosci 32:841–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner AK, Kline AE, Ren D, Willard LA, Wenger MK, Zafonte RD, Dixon CE (2007) Gender associations with chronic methylphenidate treatment and behavioral performance following experimental traumatic brain injury. Behav Brain Res 181:200–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner AK, Drewencki LL, Chen X, Santos FR, Khan AS, Harun R, Torres GE, Michael AC, Dixon CE (2009a) Chronic methylphenidate treatment enhances striatal dopamine neurotransmission after experimental traumatic brain injury. J Neurochem 108:986–997

    Article  CAS  PubMed  Google Scholar 

  • Wagner AK, Sokoloski JE, Chen X, Harun R, Clossin DP, Khan AS, Andes-Koback M, Michael AC, Dixon CE (2009b) Controlled cortical impact injury influences methylphenidate-induced changes in striatal dopamine neurotransmission. J Neurochem 110:801–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wali B, Sayeed I, Stein DG (2011) Improved behavioral outcomes after progesterone administration in aged male rats with traumatic brain injury. Restor Neurol Neurosci 29:61–71

    CAS  PubMed  Google Scholar 

  • Walker W, Seel R, Gibellato M, Lew H, Cornis-Pop M, Jena T, Silver T (2004) The effects of Donepezil on traumatic brain injury acute rehabilitation outcomes. Brain Inj 18:739–750

    Article  CAS  PubMed  Google Scholar 

  • Wang LS, Zhou J, Shao XM, Tang XC (2002) Huperzine A attenuates cognitive deficits and brain injury in neonatal rats after hypoxia-ischemia. Brain Res 949:162–170

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Lynch JR, Song P, Yang H-J, Yates RB, Mace B, Warner DS, Guyton JR, Laskowitz DT (2007) Simvastatin and atorvastatin improve behavioral outcome, reduce hippocampal degeneration, and improve cerebral blood flow after experimental traumatic brain injury. Exp Neurol 206:59–69

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Tang XC, Zhang HY (2012) Huperzine A alleviates synaptic deficits and modulates amyloidogenic and nonamyloidogenic pathways in APPswe/PS1dE9 transgenic mice. J Neurosci Res 90:508–517

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Yao W, Deng Q, Zhang X, Zhang J (2013) Protective effects of BDNF overexpression bone marrow stromal cell transplantation in rat models of traumatic brain injury. J Mol Neurosci 49:409–416

    Article  CAS  PubMed  Google Scholar 

  • Watanabe J, Shetty AK, Hattiangady B, Kim DK, Foraker JE (2013) Administration of TSG-6 improves memory after traumatic brain injury. Neurobiol Dis 59:86–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weill-Engerer S, David J-P, Sazdovitch V, Liere P, Eychenne B, Pianos A, Schumacher M, Delacourte A, Baulieu E-E, Akwa Y (2002) Neurosteroid quantification in human brain regions: comparison between Alzheimer’s and nondemented patients. J Clin Endocrinol Metab 87:5138–5143

    Article  CAS  PubMed  Google Scholar 

  • Weinstock M, Kirschbaum-Slager N, Lazarovici P, Bejar C, Youdim MB, Shoham S (2001) Neuroprotective effects of novel cholinesterase inhibitors derived from rasagiline as potential anti-Alzheimer drugs. Ann N Y Acad Sci 939:148–161

    Article  CAS  PubMed  Google Scholar 

  • Wheaton P, Mathias JL, Vink R (2011) Impact of pharmacological treatments on cognitive and behavioral outcome in the postacute stages of adult traumatic brain injury: a meta-analysis. J Clin Psychopharmacol 31:745–757

    Article  CAS  PubMed  Google Scholar 

  • Whelan FJ, Walker MS, Schultz SK (2000) Donepezil in the treatment of cognitive dysfunction associated with traumatic brain injury. Ann Clin Psychiatry 12:131–135

    Article  CAS  PubMed  Google Scholar 

  • Whitlock JA Jr (1999) Brain injury, cognitive impairment, and donepezil. J Head Trauma Rehabil 14:424–427

    Article  PubMed  Google Scholar 

  • Whyte J, Hart T, Schuster K, Fleming M, Polansky M, Coslett HB (1997) Effects of methylphenidate on attentional function after traumatic brain injury. A randomized, placebo-controlled trial. Am J Phys Med Rehabil 76:440–450

    Article  CAS  PubMed  Google Scholar 

  • Whyte J, Hart T, Vaccaro M, Grieb-Neff P, Risser A, Polansky M, Coslett HB (2004) Effects of methylphenidate on attention deficits after traumatic brain injury: a multidimensional, randomized, controlled trial. Am J Phys Med Rehabil 83:401–420

    Article  PubMed  Google Scholar 

  • Whyte J, Katz D, Long D, DiPasquale MC, Polansky M, Kalmar K, Giacino J, Childs N, Mercer W, Novak P, Maurer P, Eifert B (2005) Predictors of outcome in prolonged posttraumatic disorders of consciousness and assessment of medication effects: A multicenter study. Arch Phys Med Rehabil 86:453–462

    Article  PubMed  Google Scholar 

  • Widenfalk J, Lundströmer K, Jubran M, Brené S, Olson L (2001) Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid. J Neurosci 21:3457–3475

    CAS  PubMed  Google Scholar 

  • Widenfalk J, Lipson A, Jubran M, Hofstetter C, Ebendal T, Cao Y, Olson L (2003) Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury. Neuroscience 120:951–960

    Article  CAS  PubMed  Google Scholar 

  • Wijdicks EF, Plevak DJ, Wiesner RH, Steers JL (1996) Causes and outcome of seizures in liver transplant recipients. Neurology 47:1523–1525

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson CW, Pagulayan KF, Petrie EC, Mayer CL, Colasurdo EA, Shofer JB, Hart KL, Hoff D, Tarabochia MA, Peskind ER (2012) High prevalence of chronic pituitary and target-organ hormone abnormalities after blast-related mild traumatic brain injury. Front Neurol 3:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams SE, Ris MD, Ayyangar R, Schefft BK, Berch D (1998) Recovery in pediatric brain injury: is psychostimulant medication beneficial? J Head Trauma Rehabil 13:73–81

    Article  CAS  PubMed  Google Scholar 

  • Willmott C, Ponsford J (2009) Efficacy of methylphenidate in the rehabilitation of attention following traumatic brain injury: a randomised, crossover, double blind, placebo controlled inpatient trial. J Neurol Neurosurg Psychiatr 80:552–557

    Article  CAS  PubMed  Google Scholar 

  • Wright DW, Kellermann AL, Hertzberg VS, Clark PL, Frankel M, Goldstein FC, Salomone JP, Dent LL, Harris OA, Ander DS, Lowery DW, Patel MM, Denson DD, Gordon AB, Wald MM, Gupta S, Hoffman SW, Stein DG (2007) ProTECT: a randomized clinical trial of progesterone for acute traumatic brain injury. Ann Emerg Med 49:391–402

    Article  PubMed  Google Scholar 

  • Wüstenberg T, Begemann M, Bartels C, Gefeller O, Stawicki S, Hinze-Selch D, Mohr A, Falkai P, Aldenhoff JB, Knauth M, Nave K-A, Ehrenreich H (2011) Recombinant human erythropoietin delays loss of gray matter in chronic schizophrenia. Mol Psychiatry 16:26–36

    Article  PubMed  CAS  Google Scholar 

  • Xiao G, Wei J, Yan W, Wang W, Lu Z (2008) Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: a randomized controlled trial. Crit Care 12:R61

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong Y, Mahmood A, Lu D, Qu C, Kazmi H, Goussev A, Zhang ZG, Noguchi CT, Schallent T, Chopp M (2008a) Histological and functional outcomes after traumatic brain injury in mice null for the erythropoietin receptor in the central nervous system. Brain Res 1230:247–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Y, Lu D, Qu C, Goussev A, Schallert T, Mahmood A, Chopp M (2008b) Effects of erythropoietin on reducing brain damage and improving functional outcome after traumatic brain injury in mice. J Neurosurg 109:510–521

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong Y, Chopp M, Lee C-P (2009) Erythropoietin improves brain mitochondrial function in rats after traumatic brain injury. Neurol Res 31:496–502

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Mahmood A, Meng Y, Zhang Y, Qu C, Schallert T, Chopp M (2010a) Delayed administration of erythropoietin reducing hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome following traumatic brain injury in rats: comparison of treatment with single and triple dose. J Neurosurg 113:598–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Y, Mahmood A, Qu C, Kazmi H, Zhang ZG, Noguchi CT, Schallert T, Chopp M (2010b) Erythropoietin improves histological and functional outcomes after traumatic brain injury in mice in the absence of the neural erythropoietin receptor. J Neurotrauma 27:205–215

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong Y, Mahmood A, Zhang Y, Meng Y, Zhang ZG, Qu C, Sager TN, Chopp M (2011) Effects of posttraumatic carbamylated erythropoietin therapy on reducing lesion volume and hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome in rats following traumatic brain injury. J Neurosurg 114:549–559

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Mahmood A, Meng Y, Zhang Y, Zhang ZG, Morris DC, Chopp M (2012) Neuroprotective and neurorestorative effects of thymosin β4 treatment following experimental traumatic brain injury. Ann N Y Acad Sci 1270:51–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto SI, Nagao M, Sugimori M, Kosako H, Nakatomi H, Yamamoto N, Takebayashi H, Nabeshima Y, Kitamura T, Weinmaster G, Nakamura K, Nakafuku M (2001) Transcription factor expression and notch-dependent regulation of neural progenitors in the adult rat spinal cord. J Neurosci 21:9814–9823

    CAS  PubMed  Google Scholar 

  • Yao X-L, Liu J, Lee E, Ling GSF, McCabe JT (2005) Progesterone differentially regulates pro- and anti-apoptotic gene expression in cerebral cortex following traumatic brain injury in rats. J Neurotrauma 22:656–668

    Article  PubMed  Google Scholar 

  • Yatsiv I, Grigoriadis N, Simeonidou C, Stahel PF, Schmidt OI, Alexandrovitch AG, Tsenter J, Shohami E (2005) Erythropoietin is neuroprotective, improves functional recovery, and reduces neuronal apoptosis and inflammation in a rodent model of experimental closed head injury. FASEB J 19:1701–1703

    CAS  PubMed  Google Scholar 

  • Yi J-H, Hazell AS (2005) N-acetylcysteine attenuates early induction of heme oxygenase-1 following traumatic brain injury. Brain Res 1033:13–19

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Zhang Y, Chuang D-M (2012a) Lithium reduces BACE1 overexpression, beta amyloid accumulation, and spatial learning deficits in mice with traumatic brain injury. J Neurotrauma 29:2342–2351

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu F, Wang Z, Tchantchou F, Chiu C-T, Zhang Y, Chuang D-M (2012b) Lithium ameliorates neurodegeneration, suppresses neuroinflammation, and improves behavioral performance in a mouse model of traumatic brain injury. J Neurotrauma 29:362–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Plotkin RC, Wang G, Sandel ME, Lee S (2004) Cholinergic augmentation with donepezil enhances recovery in short-term memory and sustained attention after traumatic brain injury. Arch Phys Med Rehabil 85:1050–1055

    Article  PubMed  Google Scholar 

  • Zhang HY, Yan H, Tang XC (2008) Non-cholinergic effects of huperzine A: beyond inhibition of acetylcholinesterase. Cell Mol Neurobiol 28:173–183

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Xiong Y, Mahmood A, Meng Y, Qu C, Schallert T, Chopp M (2009) Therapeutic effects of erythropoietin on histological and functional outcomes following traumatic brain injury in rats are independent of hematocrit. Brain Res 1294:153–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Xiong Y, Mahmood A, Meng Y, Liu Z, Qu C, Chopp M (2010) Sprouting of corticospinal tract axons from the contralateral hemisphere into the denervated side of the spinal cord is associated with functional recovery in adult rat after traumatic brain injury and erythropoietin treatment. Brain Res 1353:249–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Zhou L, Wu FX (2006) Tracking neural stem cells in patients with brain trauma. N Engl J Med 355:2376–2378

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z-F, Wang Q-G, Han B-J, William CP (2010) Neuroprotective effect and cognitive outcome of chronic lithium on traumatic brain injury in mice. Brain Res Bull 83:272–277

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Tu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tu, S., Tu, J. (2017). Stem Cell Therapy in Traumatic Brain Injury. In: Pham, P. (eds) Neurological Regeneration. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-33720-3_2

Download citation

Publish with us

Policies and ethics