Skip to main content

Role of the Intestinal Immune System in Health

  • Chapter
  • First Online:
Crohn's Disease and Ulcerative Colitis

Abstract

Maintenance of the intestinal barrier and mucosal homeostasis depends on two layers of anti-inflammatory defense: (1) immune exclusion performed by secretory IgA (and secretory IgM) antibodies to modulate or inhibit surface colonization of microorganisms and dampen penetration of potentially harmful antigens; and (2) suppressive mechanisms to avoid local and peripheral hypersensitivity to innocuous antigens, particularly food proteins and components of the commensal microbiota. When induced via the gut, the latter phenomenon is called “oral tolerance,” which largely depends on the development of regulatory T (Treg) cells in mucosa-draining lymph nodes to which dendritic cells (DCs) carry exogenous antigens and become conditioned for induction of Treg cells. Mucosally induced tolerance appears to be a rather robust adaptive immune function in view of the fact that large amounts of food proteins pass through the gut, while overt and persistent food allergy is not so common. Moreover, most individuals live in harmony with an intestinal population of commensal bacteria which is some ten times the number of cells of the body. This homeostatic mutualism is regulated by specialized DCs that are “decision makers” of the immune system when they perform their antigen-presenting function, thus linking innate and adaptive immunity by sensing the exogenous impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brandtzaeg P. Mucosal immunity: induction, dissemination, and effector functions. Scand J Immunol. 2009;70:505–15.

    Article  CAS  PubMed  Google Scholar 

  2. Brandtzaeg P. The mucosal B-cell system. In: Mestecky J, Strober W, Russell MW, Kelsall BL, Cheroutre H, Lambrecht BN, editors. Mucosal immunology. 4th ed. Amsterdam: Academic Press/Elsevier; 2015. p. 623–81. Chapter 31.

    Chapter  Google Scholar 

  3. Corthésy B. Role of secretory immunoglobulin A and secretory component in the protection of mucosal surfaces. Future Microbiol. 2010;5:817–29.

    Article  PubMed  Google Scholar 

  4. Brandtzaeg P. Induction of secretory immunity and memory at mucosal surfaces. Vaccine. 2007;25:5467–84.

    Article  CAS  PubMed  Google Scholar 

  5. Brandtzaeg P. Functions of mucosa-associated lymphoid tissue in antibody formation. Immunol Invest. 2010;39:303–55.

    Article  CAS  PubMed  Google Scholar 

  6. Brandtzaeg P, Halstensen TS, Kett K, Krajci P, Kvale D, Rognum TO, et al. Immunobiology and immunopathology of human gut mucosa: humoral immunity and intraepithelial lymphocytes. Gastroenterology. 1989;97:1562–84.

    Article  CAS  PubMed  Google Scholar 

  7. Brandtzaeg P. History of oral tolerance and mucosal immunity. Ann N Y Acad Sci. 1996;778:1–27.

    Article  CAS  PubMed  Google Scholar 

  8. Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9:799–809.

    Article  CAS  PubMed  Google Scholar 

  9. Lin X, Chen M, Liu Y, Guo Z, He X, Brand D, et al. Advances in distinguishing natural from induced Foxp3+ regulatory T cells. Int J Clin Exp Pathol. 2013;6:116–23.

    PubMed  PubMed Central  Google Scholar 

  10. Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology. 2009;136:65–80.

    Article  PubMed  Google Scholar 

  11. Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010;10:159–69.

    Article  CAS  PubMed  Google Scholar 

  12. Brandtzaeg P. Food allergy: separating the science from the mythology. Nat Rev Gastroenterol Hepatol. 2010;7:380–400.

    Article  CAS  PubMed  Google Scholar 

  13. Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med. 2002;347:911–20.

    Article  PubMed  Google Scholar 

  14. Guarner F, Bourdet-Sicard R, Brandtzaeg P, Gill HS, McGuirk P, van Eden W, et al. Mechanisms of disease: the hygiene hypothesis revisited. Nat Clin Pract Gastroenterol Hepatol. 2006;3:275–84.

    Article  CAS  PubMed  Google Scholar 

  15. Björkstén B. The hygiene hypothesis: do we still believe in it? In: Brandtzaeg P, Isolauri E, Prescott SL, editors. Microbial–host interaction: tolerance versus allergy. Nestlé nutr. workshop ser. pediatr. program, vol 64. Basel: Nestec Ltd., Vevey/S, Karger AG; 2009. p. 11–22.

    Google Scholar 

  16. Vickery BP, Burks AW. Immunotherapy in the treatment of food allergy: focus on oral tolerance. Curr Opin Allergy Clin Immunol. 2009;9:364–70.

    Article  CAS  PubMed  Google Scholar 

  17. von Hertzen LC, Savolainen J, Hannuksela M, Klaukka T, Lauerma A, Mäkelä MJ, et al. Scientific rationale for the Finnish Allergy Programme 2008–2018: emphasis on prevention and endorsing tolerance. Allergy. 2009;64:678–701.

    Article  Google Scholar 

  18. Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14:667–85. doi:10.1038/nri3738.

    Article  CAS  PubMed  Google Scholar 

  19. Pelaseyed T, Bergström JH, Gustafsson JK, Ermund A, Birchenough GM, Schütte A, et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev. 2014;260:8–20. doi:10.1111/imr.12182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Macpherson AJ, Geuking MB, McCoy KD. Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria. Immunology. 2005;115:153–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Konrad A, Cong Y, Duck W, Borlaza R, Elson CO. Tight mucosal compartmentation of the murine immune response to antigens of the enteric microbiota. Gastroenterology. 2006;130:2050–9.

    Article  CAS  PubMed  Google Scholar 

  22. Duerkop BA, Vaishnava S, Hooper LV. Immune responses to the microbiota at the intestinal mucosal surface. Immunity. 2009;31:368–76.

    Article  CAS  PubMed  Google Scholar 

  23. Brandtzaeg P. Mechanisms of gastrointestinal reactions to food. Environ Toxicol Pharmacol. 1997;4:9–24.

    Article  CAS  PubMed  Google Scholar 

  24. Scurlock AM, Burks AW, Jones SM. Oral immunotherapy for food allergy. Curr Allergy Asthma Rep. 2009;9:186–93.

    Article  PubMed  Google Scholar 

  25. Brandtzaeg P, Nilssen DE, Rognum TO, Thrane PS. Ontogeny of the mucosal immune system and IgA deficiency. Gastroenterol Clin North Am. 1991;20:397–439.

    CAS  PubMed  Google Scholar 

  26. Brandtzaeg P. Development and basic mechanisms of human gut immunity. Nutr Rev. 1998;56:S5–18.

    Article  CAS  PubMed  Google Scholar 

  27. Neish AS. Mucosal immunity and the microbiome. Ann Am Thorac Soc. 2014;11 Suppl 1:S28–32. doi:10.1513/AnnalsATS.201306-161MG.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brandtzaeg P, Johansen F-E. Mucosal B cells: phenotypic characteristics, transcriptional regulation, and homing properties. Immunol Rev. 2005;206:32–63.

    Article  CAS  PubMed  Google Scholar 

  29. Renz H, Brandtzaeg P, Hornef M. The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nat Rev Immunol. 2011;12:9–23. doi:10.1038/nri3112.

    Article  PubMed  CAS  Google Scholar 

  30. van de Pavert SA, Mebius RE. New insights into the development of lymphoid tissues. Nat Rev Immunol. 2010;10:664–74.

    Article  PubMed  CAS  Google Scholar 

  31. Neutra MR, Mantis NJ, Kraehenbuhl JP. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat Immunol. 2001;2:1004–9.

    Article  CAS  PubMed  Google Scholar 

  32. Kraus TA, Brimnes J, Muong C, Liu JH, Moran TM, Tappenden KA, et al. Induction of mucosal tolerance in Peyer’s patch-deficient, ligated small bowel loops. J Clin Invest. 2005;115:2234–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Worbs T, Bode U, Yan S, Hoffmann MW, Hintzen G, Bernhardt G, et al. Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J Exp Med. 2006;203:519–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brandtzaeg P. The mucosal immune system and its integration of the mammary glands. J Pediatr. 2010;156 Suppl 1:S8–15.

    Article  CAS  PubMed  Google Scholar 

  35. Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol. 2008;8:685–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsuji M, Komatsu N, Kawamoto S, Suzuki K, Kanagawa O, Honjo T, et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer’s patches. Science. 2009;323:1488–92.

    Article  CAS  PubMed  Google Scholar 

  37. Hirota K, Turner JE, Villa M, Duarte JH, Demengeot J, Steinmetz OM, et al. Plasticity of Th17 cells in Peyer’s patches is responsible for the induction of T cell-dependent IgA responses. Nat Immunol. 2013;14:372–9. doi:10.1038/ni.2552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kato LM, Kawamoto S, Maruya M, Fagarasan S. Gut TFH and IgA: key players for regulation of bacterial communities and immune homeostasis. Immunol Cell Biol. 2014;92:49–56. doi:10.1038/icb.2013.54.

    Article  CAS  PubMed  Google Scholar 

  39. Endsley MA, Njongmeta LM, Shell E, Ryan MW, Indrikovs AJ, Ulualp S, et al. Human IgA-inducing protein from dendritic cells induces IgA production by naive IgD+ B cells. J Immunol. 2009;182:1854–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Johansen F-E, Brandtzaeg P. Transcriptional regulation of the mucosal IgA system. Trends Immunol. 2004;25:150–7.

    Article  CAS  PubMed  Google Scholar 

  41. Yamanaka T, Helgeland L, Farstad IN, Fukushima H, Midtvedt T, Brandtzaeg P. Microbial colonization drives lymphocyte accumulation and differentiation in the follicle-associated epithelium of Peyer’s patches. J Immunol. 2003;170:816–22.

    Article  CAS  PubMed  Google Scholar 

  42. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–23. Erratum in: Nat Rev Immunol. 2009;9:600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Menezes JS, Mucida DS, Cara DC, Alvarez-Leite JI, Russo M, Vaz NM, et al. Stimulation by food proteins plays a critical role in the maturation of the immune system. Int Immunol. 2003;15:447–55.

    Article  CAS  PubMed  Google Scholar 

  44. Barone F, Patel P, Sanderson JD, Spencer J. Gut-associated lymphoid tissue contains the molecular machinery to support T-cell-dependent and T-cell-independent class switch recombination. Mucosal Immunol. 2009;2:495–503.

    Article  CAS  PubMed  Google Scholar 

  45. Barone F, Vossenkamper A, Boursier L, Su W, Watson A, John S, et al. IgA-producing plasma cells originate from germinal centers that are induced by B-cell receptor engagement in humans. Gastroenterology. 2011;140:947–56. doi:10.1053/j.gastro.2010.12.005.

    Article  CAS  PubMed  Google Scholar 

  46. Cerutti A, Rescigno M. The biology of intestinal immunoglobulin A responses. Immunity. 2008;28:740–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin M, Du L, Brandtzaeg P, Pan-Hammarström Q. IgA subclass switch recombination in human mucosal and systemic immune compartments. Mucosal Immunol. 2014;7:511–20. doi:10.1038/mi.2013.68.

    Article  CAS  PubMed  Google Scholar 

  48. Rangel-Moreno J, Moyron-Quiroz JE, Carragher DM, Kusser K, Hartson L, Moquin A, et al. Omental milky spots develop in the absence of lymphoid tissue-inducer cells and support B and T cell responses to peritoneal antigens. Immunity. 2009;30:731–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brandtzaeg P, Baekkevold ES, Morton HC. From B to A the mucosal way. Nat Immunol. 2001;2:1093–4.

    Article  CAS  PubMed  Google Scholar 

  50. Brandtzaeg P, Pabst R. Let’s go mucosal: communication on slippery ground. Trends Immunol. 2004;25:570–7.

    Article  CAS  PubMed  Google Scholar 

  51. Bergqvist P, Stensson A, Lycke NY, Bemark M. T cell-independent IgA class switch recombination is restricted to the GALT and occurs prior to manifest germinal center formation. J Immunol. 2010;184:3545–53.

    Article  CAS  PubMed  Google Scholar 

  52. Tsuji M, Suzuki K, Kitamura H, Maruya M, Kinoshita K, Ivanov II, et al. Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity. 2008;29:261–71.

    Article  CAS  PubMed  Google Scholar 

  53. Huard B, McKee T, Bosshard C, Durual S, Matthes T, Myit S, et al. APRIL secreted by neutrophils binds to heparan sulfate proteoglycans to create plasma cell niches in human mucosa. J Clin Invest. 2008;118:2887–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Brandtzaeg P, Farstad IN, Helgeland L. Phenotypes of T cells in the gut. Chem Immunol. 1998;71:1–26.

    Article  CAS  PubMed  Google Scholar 

  55. Brandtzaeg P. Gate-keeper function of the intestinal epithelium. Benef Microbes. 2013;4:67–82. doi:10.3920/BM2012.0024.

    Article  CAS  PubMed  Google Scholar 

  56. Stoll BJ, Lee FK, Hale E, Schwartz D, Holmes R, Ashby R, et al. Immunoglobulin secretion by the normal and the infected newborn infant. J Pediatr. 1993;122:780–6.

    Article  CAS  PubMed  Google Scholar 

  57. Nahmias A, Stoll B, Hale E, Ibegbu C, Keyserling H, Innis-Whitehouse W, et al. IgA-secreting cells in the blood of premature and term infants: normal development and effect of intrauterine infections. Adv Exp Med Biol. 1991;310:59–69.

    Article  CAS  PubMed  Google Scholar 

  58. Siegrist CA, Aspinall R. B-cell responses to vaccination at the extremes of age. Nat Rev Immunol. 2009;9:185–94.

    Article  CAS  PubMed  Google Scholar 

  59. Crabbé PA, Nash DR, Bazin H, Eyssen H, Heremans JF. Immunohistochemical observations on lymphoid tissues from conventional and germ-free mice. Lab Invest. 1970;22:448–57.

    PubMed  Google Scholar 

  60. Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol. 2004;4:478–85.

    Article  CAS  PubMed  Google Scholar 

  61. Lodinová R, Jouja V, Wagner V. Serum immunoglobulins and coproantibody formation in infants after artificial intestinal colonization with Escherichia coli 083 and oral lysozyme administration. Pediatr Res. 1973;7:659–69.

    Article  PubMed  Google Scholar 

  62. Moreau MC, Ducluzeau R, Guy-Grand D, Muller MC. Increase in the population of duodenal immunoglobulin A plasmocytes in axenic mice associated with different living or dead bacterial strains of intestinal origin. Infect Immun. 1978;21:532–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 2012;149:1578–93. doi:10.1016/j.cell.2012.04.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Holt PG, Jones CA. The development of the immune system during pregnancy and early life. Allergy. 2000;55:688–97.

    Article  CAS  PubMed  Google Scholar 

  65. Ridge JP, Fuchs EJ, Matzinger P. Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science. 1996;271:1723–6.

    Article  CAS  PubMed  Google Scholar 

  66. Shroff KE, Meslin K, Cebra JJ. Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect Immun. 1995;63:3904–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hapfelmeier S, Lawson MA, Slack E, Kirundi JK, Stoel M, Heikenwalder M, et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science. 2010;328:1705–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brandtzaeg P, Prydz H. Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulin. Nature. 1984;311:71–3.

    Article  CAS  PubMed  Google Scholar 

  69. Johansen F-E, Braathen R, Brandtzaeg P. The J chain is essential for polymeric Ig receptor-mediated epithelial transport of IgA. J Immunol. 2001;167:5185–92.

    Article  CAS  PubMed  Google Scholar 

  70. Brandtzaeg P, Kiyono H, Pabst R, Russell MW. Terminology: nomenclature of mucosa-associated lymphoid tissue. Mucosal Immunol. 2008;1:31–7.

    Article  CAS  PubMed  Google Scholar 

  71. Brandtzaeg P. Human secretory immunoglobulin M. An immunochemical and immunohistochemical study. Immunology. 1975;29:559–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Braathen R, Hohman VS, Brandtzaeg P, Johansen F-E. Secretory antibody formation: conserved binding interactions between J chain and polymeric Ig receptor from humans and amphibians. J Immunol. 2007;178:1589–97.

    Article  CAS  PubMed  Google Scholar 

  73. Bollinger RR, Everett ML, Wahl SD, Lee YH, Orndorff PE, Parker W. Secretory IgA and mucin-mediated biofilm formation by environmental strains of Escherichia coli: role of type 1 pili. Mol Immunol. 2006;43:378–87.

    Article  CAS  PubMed  Google Scholar 

  74. Persson CG, Gustafsson B, Erjefält JS, Sundler F. Mucosal exudation of plasma is a noninjurious intestinal defense mechanism. Allergy. 1993;48:581–6.

    Article  CAS  PubMed  Google Scholar 

  75. Kuo TT, Baker K, Yoshida M, Qiao SW, Aveson VG, Lencer WI, et al. Neonatal Fc receptor: from immunity to therapeutics. J Clin Immunol. 2010;30:777–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bouvet JP, Pires R, Iscaki S, Pillot J. Nonimmune macromolecular complexes of Ig in human gut lumen. Probable enhancement of antibody functions. J Immunol. 1993;151:2562–71.

    CAS  PubMed  Google Scholar 

  77. Mellander L, Carlsson B, Jalil F, Söderström T, Hanson LA, Carlsson B, et al. Secretory IgA antibody response against Escherichia coli antigens in infants in relation to exposure. J Pediatr. 1985;107:430–3.

    Article  CAS  PubMed  Google Scholar 

  78. Martino DJ, Currie H, Taylor A, Conway P, Prescott SL. Relationship between early intestinal colonization, mucosal immunoglobulin A production and systemic immune development. Clin Exp Allergy. 2008;38:69–78.

    CAS  PubMed  Google Scholar 

  79. Kukkonen K, Kuitunen M, Haahtela T, Korpela R, Poussa T, Savilahti E. High intestinal IgA associates with reduced risk of IgE-associated allergic diseases. Pediatr Allergy Immunol. 2010;21(1 Pt 1):67–73.

    Article  PubMed  Google Scholar 

  80. Sjögren YM, Tomicic S, Lundberg A, Böttcher MF, Björkstén B, Sverremark-Ekström E, et al. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses. Clin Exp Allergy. 2009;39:1842–51.

    Article  PubMed  CAS  Google Scholar 

  81. Ismail AS, Severson KM, Vaishnava S, Behrendt CL, Yu X, Benjamin JL, et al. Gammadelta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc Natl Acad Sci U S A. 2011;108:8743–8. doi:10.1073/pnas.1019574108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Smith PM, Garrett WS. The gut microbiota and mucosal T cells. Front Microbiol. 2011;2:111. doi:10.3389/fmicb.2011.00111.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Nilssen DE, Brandtzaeg P. Intraepithelial γδ T cells remain increased in the duodenum of AIDS patients despite antiretroviral treatment. PLoS One. 2012;7:e29066. doi:10.1371/journal.pone.0029066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. van Elburg RM, Uil JJ, de Monchy JG, Heymans HS. Intestinal permeability in pediatric gastroenterology. Scand J Gastroenterol. 1992;194(Suppl):19–24.

    Article  Google Scholar 

  85. Johansen F-E, Pekna M, Norderhaug IN, Haneberg B, Hietala MA, Krajci P, et al. Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J Exp Med. 1999;190:915–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sait LC, Galic M, Price JD, Simpfendorfer KR, Diavatopoulos DA, Uren TK, et al. Secretory antibodies reduce systemic antibody responses against the gastrointestinal commensal flora. Int Immunol. 2007;19:257–65.

    Article  CAS  PubMed  Google Scholar 

  87. Johansson ME, Larsson JM, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4659–65. doi:10.1073/pnas.1006451107.77.

    Article  CAS  PubMed  Google Scholar 

  88. Karlsson MR, Johansen FE, Kahu H, Macpherson A, Brandtzaeg P. Hypersensitivity and oral tolerance in the absence of a secretory immune system. Allergy. 2010;65:561–70.

    Article  CAS  PubMed  Google Scholar 

  89. Janzi M, Kull I, Sjöberg R, Wan J, Melén E, Bayat N, et al. Selective IgA deficiency in early life: association to infections and allergic diseases during childhood. Clin Immunol. 2009;133:78–85.

    Article  CAS  PubMed  Google Scholar 

  90. Brandtzaeg P, Karlsson G, Hansson G, Petruson B, Björkander J, Hanson LA. The clinical condition of IgA-deficient patients is related to the proportion of IgD- and IgM-producing cells in their nasal mucosa. Clin Exp Immunol. 1987;67:626–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. McLoughlin GA, Hede JE, Temple JG, Bradley J, Chapman DM, McFarland J. The role of IgA in the prevention of bacterial colonization of the jejunum in the vagotomized subject. Br J Surg. 1978;65:435–7.

    Article  CAS  PubMed  Google Scholar 

  92. Ludvigsson JF, Neovius M, Hammarström L. Association between IgA deficiency & other autoimmune conditions: a population-based matched cohort study. J Clin Immunol. 2014;34:444–51. doi:10.1007/s10875-014-0009-4.

    Article  CAS  PubMed  Google Scholar 

  93. Fagarasan S, Muramatsu M, Suzuki K, et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science. 2002;298:1424–7.

    Article  CAS  PubMed  Google Scholar 

  94. Carlsen HS, Baekkevold ES, Johansen F-E, et al. B cell attracting chemokine 1 (CXCL13) and its receptor CXCR5 are expressed in normal and aberrant gut associated lymphoid tissue. Gut. 2002;51:364–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Strugnell RA, Wijburg OL. The role of secretory antibodies in infection immunity. Nat Rev Microbiol. 2010;8:656–67.

    Article  CAS  PubMed  Google Scholar 

  96. Murthy AK, Dubose CN, Banas JA, et al. Contribution of polymeric immunoglobulin receptor to regulation of intestinal inflammation in dextran sulfate sodium-induced colitis. J Gastroenterol Hepatol. 2006;21:1372–80.

    CAS  PubMed  Google Scholar 

  97. Smith M, Tourigny MR, Noakes P, Thornton CA, Tulic MK, Prescott SL. Children with egg allergy have evidence of reduced neonatal CD4+CD25+CD127lo/− regulatory T cell function. J Allergy Clin Immunol. 2008;121:1460–6. 466.e1–7.

    Article  CAS  PubMed  Google Scholar 

  98. Martino DJ, Prescott SL. Silent mysteries: epigenetic paradigms could hold the key to conquering the epidemic of allergy and immune disease. Allergy. 2009;65:1–15.

    Google Scholar 

  99. Haddeland U, Karstensen AB, Farkas L, Bø KO, Pirhonen J, Karlsson M, et al. Putative regulatory T cells are impaired in cord blood from neonates with hereditary allergy risk. Pediatr Allergy Immunol. 2005;16:104–12.

    Article  PubMed  Google Scholar 

  100. Wang G, Miyahara Y, Guo Z, Khattar M, Stepkowski SM, Chen W. “Default” generation of neonatal regulatory T cells. J Immunol. 2010;185:71–8.

    Article  CAS  PubMed  Google Scholar 

  101. Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol. 2008;8:411–20.

    Article  CAS  PubMed  Google Scholar 

  102. Cario E. Heads up! How the intestinal epithelium safeguards mucosal barrier immunity through the inflammasome and beyond. Curr Opin Gastroenterol. 2010;26:583–90.

    Article  PubMed  Google Scholar 

  103. Lotz M, Gütle D, Walther S, Ménard S, Bogdan C, Hornef MW. Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. J Exp Med. 2006;203:973–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pott J, Hornef M. Innate immune signalling at the intestinal epithelium in homeostasis and disease. EMBO Rep. 2012;13:684–98. doi:10.1038/embor.2012.96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Russell MW, Reinholdt J, Kilian M. Anti-inflammatory activity of human IgA antibodies and their Fab α fragments: inhibition of IgG-mediated complement activation. Eur J Immunol. 1989;19:2243–9.

    Article  CAS  PubMed  Google Scholar 

  106. Brandtzaeg P, Tolo K. Mucosal penetrability enhanced by serum-derived antibodies. Nature. 1977;266:262–3.

    Article  CAS  PubMed  Google Scholar 

  107. Mazanec MB, Nedrud JG, Kaetzel CS, et al. A three-tiered view of the role of IgA in mucosal defense. Immunol Today. 1993;14:430–5.

    Article  CAS  PubMed  Google Scholar 

  108. Robinson JK, Blanchard TG, Levine AD, et al. A mucosal IgA-mediated excretory immune system in vivo. J Immunol. 2001;166:3688–92.

    Article  CAS  PubMed  Google Scholar 

  109. Di Niro R, Mesin L, Raki M, Zheng NY, Lund-Johansen F, Lundin KE, et al. Rapid generation of rotavirus-specific human monoclonal antibodies from small-intestinal mucosa. J Immunol. 2010;185:5377–83.

    Article  PubMed  CAS  Google Scholar 

  110. Wijburg OL, Uren TK, Simpfendorfer K, Johansen FE, Brandtzaeg P, Strugnell RA. Innate secretory antibodies protect against natural Salmonella typhimurium infection. J Exp Med. 2006;203:21–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. van der Steen L, Tuk CW, Bakema JE, Kooij G, Reijerkerk A, Vidarsson G, et al. Immunoglobulin A: Fc(alpha)RI interactions induce neutrophil migration through release of leukotriene B4. Gastroenterology. 2009;137:2018–29.e1–3.

    Google Scholar 

  112. Wolf HM, Fischer MB, Puhringer H, et al. Human serum IgA downregulates the release of inflammatory cytokines (tumor necrosis factor-α, interleukin-6) in human monocytes. Blood. 1994;83:1278–88.

    CAS  PubMed  Google Scholar 

  113. Smith PD, Smythies LE, Mosteller-Barnum M, et al. Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS- and IgA-mediated activities. J Immunol. 2001;167:2651–6.

    Article  CAS  PubMed  Google Scholar 

  114. Hamre R, Farstad IN, Brandtzaeg P, Morton HC. Expression and modulation of the human immunoglobulin A Fc receptor (CD89) and the FcR gamma chain on myeloid cells in blood and tissue. Scand J Immunol. 2003;57:506–16.

    Article  CAS  PubMed  Google Scholar 

  115. Wolf HM, Vogel E, Fischer MB, et al. Inhibition of receptor-dependent and receptor-independent generation of the respiratory burst in human neutrophils and monocytes by human serum IgA. Pediatr Res. 1994;36:235–43.

    Article  CAS  PubMed  Google Scholar 

  116. Deviere J, Vaerman JP, Content J, et al. IgA triggers tumor necrosis factor α secretion by monocytes: a study in normal subjects and patients with alcoholic cirrhosis. Hepatology. 1991;13:670–5.

    Article  CAS  PubMed  Google Scholar 

  117. Lamkhioued B, Gounni AS, Gruart V, et al. Human eosinophils express a receptor for secretory component. Role in secretory IgA-dependent activation. Eur J Immunol. 1995;25:117–25.

    Article  CAS  PubMed  Google Scholar 

  118. Motegi Y, Kita H. Interaction with secretory component stimulates effector functions of human eosinophils but not of neutrophils. J Immunol. 1998;161:4340–6.

    CAS  PubMed  Google Scholar 

  119. Bartemes KR, Cooper KM, Drain KL, Kita H. Secretory IgA induces antigen-independent eosinophil survival and cytokine production without inducing effector functions. J Allergy Clin Immunol. 2005;116:827–35.

    Article  CAS  PubMed  Google Scholar 

  120. Monteiro RC. Immunoglobulin A, as an anti-inflammatory agent. Clin Exp Immunol. 2014;178 Suppl 1:108–10. doi:10.1111/cei.12531.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Pasquier B, Launay P, Kanamaru Y, Moura IC, Pfirsch S, Ruffié C, et al. Identification of FcalphaRI as an inhibitory receptor that controls inflammation: dual role of FcRgamma ITAM. Immunity. 2005;22:31–42.

    CAS  PubMed  Google Scholar 

  122. Rugtveit J, Bakka A, Brandtzaeg P. Differential distribution of B7.1 (CD80) and B7.2 (CD86) co-stimulatory molecules on mucosal macrophage subsets in human inflammatory bowel disease (IBD). Clin Exp Immunol. 1997;110:104–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hausmann M, Rogler G. Immune-non immune networks in intestinal inflammation. Curr Drug Targets. 2008;9:388–94.

    Article  CAS  PubMed  Google Scholar 

  124. Brandtzaeg P, Carlsen HS, Halstensen TS. The B-cell system in inflammatory bowel disease. Adv Exp Med Biol. 2006;579:149–67.

    Article  CAS  PubMed  Google Scholar 

  125. van Egmond M, van Garderen E, van Spriel AB, Damen CA, van Amersfoort ES, van Zandbergen G, et al. FcalphaRI-positive liver Kupffer cells: reappraisal of the function of immunoglobulin A in immunity. Nat Med. 2000;6:680–5.

    Article  PubMed  Google Scholar 

  126. Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol. 2010;10:753–66.

    Article  CAS  PubMed  Google Scholar 

  127. Barbalat R, Barton GM. MicroRNAs and LPS: developing a relationship in the neonatal gut. Cell Host Microbe. 2010;8:303–4.

    Article  CAS  PubMed  Google Scholar 

  128. Eggesbø M, Botten G, Stigum H, Nafstad P, Magnus P. Is delivery by cesarean section a risk factor for food allergy? J Allergy Clin Immunol. 2003;112:420–6.

    Article  PubMed  Google Scholar 

  129. Koplin J, Allen K, Gurrin L, Osborne N, Tang ML, Dharmage S. Is caesarean delivery associated with sensitization to food allergens and IgE-mediated food allergy: a systematic review. Pediatr Allergy Immunol. 2008;19:682–7.

    Article  PubMed  Google Scholar 

  130. Claud EC, Lu L, Anton PM, Savidge T, Walker WA, Cherayil BJ. Developmentally regulated IkappaB expression in intestinal epithelium and susceptibility to flagellin-induced inflammation. Proc Natl Acad Sci U S A. 2004;101:7404–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chassin C, Kocur M, Pott J, Duerr CU, Gütle D, Lotz M, et al. miR-146a mediates protective innate immune tolerance in the neonate intestine. Cell Host Microbe. 2010;8:358–68. doi:10.1016/j.chom.2010.09.005.

    Article  CAS  PubMed  Google Scholar 

  132. Kajino-Sakamoto R, Inagaki M, Lippert E, Akira S, Robine S, Matsumoto K, et al. Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development of ileitis and colitis. J Immunol. 2008;181:1143–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science. 2001;291:881–4.

    Article  CAS  PubMed  Google Scholar 

  134. Broquet AH, Hirata Y, McAllister CS, Kagnoff MF. RIG-I/MDA5/MAVS are required to signal a protective IFN response in rotavirus-infected intestinal epithelium. J Immunol. 2011;186:1618–26. doi:10.4049/jimmunol.1002862.

    Article  CAS  PubMed  Google Scholar 

  135. Neish AS, Gewirtz AT, Zeng H, Young AN, Hobert ME, Karmali V, et al. Prokaryotic regulation of epithelial responses by inhibition of IkB-α ubiquitination. Science. 2000;289:1560–3.

    Article  CAS  PubMed  Google Scholar 

  136. Lavelle EC, Murphy C, O’Neill LA, Creagh EM. The role of TLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis. Mucosal Immunol. 2010;3:17–28.

    Article  CAS  PubMed  Google Scholar 

  137. Schneeman TA, Bruno ME, Schjerven H, Johansen FE, Chady L, Kaetzel CS. Regulation of the polymeric Ig receptor by signaling through TLRs 3 and 4: linking innate and adaptive immune responses. J Immunol. 2005;175:376–84.

    Article  CAS  PubMed  Google Scholar 

  138. Brandtzaeg P, Halstensen TS, Huitfeldt HS, Krajci P, Kvale D, Scott H, et al. Epithelial expression of HLA, secretory component (poly-Ig receptor), and adhesion molecules in the human alimentary tract. Ann N Y Acad Sci. 1992;664:157–79.

    Article  CAS  PubMed  Google Scholar 

  139. Bruno ME, Rogier EW, Frantz AL, Stefka AT, Thompson SN, Kaetzel CS. Regulation of the polymeric immunoglobulin receptor in intestinal epithelial cells by Enterobacteriaceae: implications for mucosal homeostasis. Immunol Invest. 2010;39:356–82.

    Article  CAS  PubMed  Google Scholar 

  140. Sarkar J, Gangopadhyay NN, Moldoveanu Z, Mestecky J, Stephensen CB. Vitamin A is required for regulation of polymeric immunoglobulin receptor (pIgR) expression by interleukin-4 and interferon-gamma in a human intestinal epithelial cell line. J Nutr. 1998;128:1063–9.

    CAS  PubMed  Google Scholar 

  141. Takenouchi-Ohkubo N, Asano M, Chihaya H, Chung-Hsuing WU, Ishikasa K, Moro I. Retinoic acid enhances the gene expression of human polymeric immunoglobulin receptor (pIgR) by TNF-alpha. Clin Exp Immunol. 2004;135:448–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kvale D, Brandtzaeg P. Constitutive and cytokine induced expression of HLA molecules, secretory component, and intercellular adhesion molecule-1 is modulated by butyrate in the colonic epithelial cell line HT-29. Gut. 1995;36:737–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Glauber JG, Wandersee NJ, Little JA, Ginder GD. 5′-Flanking sequences mediate butyrate stimulation of embryonic globin gene expression in adult erythroid cells. Mol Cell Biol. 1991;11:4690–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al. Rudensky AY Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–5. doi:10.1038/nature12726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–50. doi:10.1038/nature12721.

    Article  CAS  PubMed  Google Scholar 

  146. Lee J, Mo JH, Katakura K, Alkalay I, Rucker AN, Liu YT, et al. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol. 2006;8:1327–36.

    Article  CAS  PubMed  Google Scholar 

  147. Nenci A, Becker C, Wullaert A, Gareus R, van Loo G, Danese S, et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature. 2007;446:557–61.

    Article  CAS  PubMed  Google Scholar 

  148. Rescigno M, Lopatin U, Chieppa M. Interactions among dendritic cells, macrophages, and epithelial cells in the gut: implications for immune tolerance. Curr Opin Immunol. 2008;20:669–75.

    Article  CAS  PubMed  Google Scholar 

  149. Iliev ID, Spadoni I, Mileti E, Matteoli G, Sonzogni A, Sampietro GM, et al. Human intestinal epithelial cells promote the differentiation of tolerogenic dendritic cells. Gut. 2009;58:1481–9.

    Article  CAS  PubMed  Google Scholar 

  150. Shale M, Ghosh S. How intestinal epithelial cells tolerise dendritic cells and its relevance to inflammatory bowel disease. Gut. 2009;58:1291–9.

    Article  CAS  PubMed  Google Scholar 

  151. Abreu MT, Palladino AA, Arnold ET, Kwon RS, McRoberts JA. Modulation of barrier function during Fas-mediated apoptosis in human intestinal epithelial cells. Gastroenterology. 2000;119:1524–36.

    Article  CAS  PubMed  Google Scholar 

  152. Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol. 2009;124:3–20. quiz 21–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Strober W, Fuss I, Mannon P. The fundamental basis of inflammatory bowel disease. J Clin Invest. 2007;117:514–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Feng T, Wang L, Schoeb TR, et al. Microbiota innate stimulation is a prerequisite for T cell spontaneous proliferation and induction of experimental colitis. J Exp Med. 2010;207:1321–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336:1268–73. doi:10.1126/science.1223490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science. 2011;334:255–8. doi:10.1126/science.1209791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hansson GC. Role of mucus layers in gut infection and inflammation. Curr Opin Microbiol. 2012;15:57–62. doi:10.1016/j.mib.2011.11.002.

    Article  CAS  PubMed  Google Scholar 

  158. Rogier EW, Frantz AL, Bruno ME, Wedlund L, Cohen DA, Stromberg AJ, et al. Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proc Natl Acad Sci U S A. 2014;111:3074–9. doi:10.1073/pnas.1315792111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Rogier EW, Frantz AL, Bruno ME, Kaetzel CS. Secretory IgA is concentrated in the outer layer of colonic mucus along with gut bacteria. Pathogens. 2014;3:390–403. doi:10.3390/pathogens3020390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wenzel UA, Magnusson MK, Rydström A, Jonstrand C, Hengst J, Johansson ME, et al. Spontaneous colitis in Muc2-deficient mice reflects clinical and cellular features of active ulcerative colitis. PLoS One. 2014;9:e100217. doi:10.1371/journal.pone.0100217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Brandtzaeg P, Fjellanger I, Gjeruldsen ST. Adsorption of immunoglobulin A onto oral bacteria in vivo. J Bacteriol. 1968;96:242–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. van der Waaij LA, Limburg PC, Mesander G, van der Waaij D. In vivo IgA coating of anaerobic bacteria in human faeces. Gut. 1996;38:348–54.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe. 2007;2:328–39.

    Article  CAS  PubMed  Google Scholar 

  164. Hansen J, Gulati A, Sartor RB. The role of mucosal immunity and host genetics in defining intestinal commensal bacteria. Curr Opin Gastroenterol. 2010;26:564–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bergqvist P, Stensson A, Hazanov L, Holmberg A, Mattsson J, Mehr R, et al. Re-utilization of germinal centers in multiple Peyer’s patches results in highly synchronized, oligoclonal, and affinity-matured gut IgA responses. Mucosal Immunol. 2013;6:122–35. doi:10.1038/mi.2012.56.

    Article  CAS  PubMed  Google Scholar 

  166. Spencer J, Klavinskis LS, Fraser LD. The human intestinal IgA response; burning questions. Front Immunol. 2012;3:108. doi:10.3389/fimmu.2012.00108.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Lindner C, Wahl B, Föhse L, Suerbaum S, Macpherson AJ, Prinz I, et al. Age, microbiota, and T cells shape diverse individual IgA repertoires in the intestine. J Exp Med. 2012;209:365–77. doi:10.1084/jem.20111980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Pabst O. New concepts in the generation and functions of IgA. Nat Rev Immunol. 2012;12:821–32. doi:10.1038/nri3322.

    Article  CAS  PubMed  Google Scholar 

  169. Slack E, Balmer ML, Fritz JH, Hapfelmeier S. Functional flexibility of intestinal IgA—broadening the fine line. Front Immunol. 2012;3:100. doi:10.3389/fimmu.2012.00100.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Brandtzaeg P. Secretory IgA: designed for anti-microbial defense. Front Immunol. 2013;4:222. doi:10.3389/fimmu.2013.00222.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Macpherson AJ, Köller Y, McCoy KD. The bilateral responsiveness between intestinal microbes and IgA. Trends Immunol. 2015;36:460–70. doi:10.1016/j.it.2015.06.006.

    Article  CAS  PubMed  Google Scholar 

  172. Ashida H, Ogawa M, Kim M, Mimuro H, Sasakawa C. Bacteria and host interactions in the gut epithelial barrier. Nat Chem Biol. 2011;8:36–45. doi:10.1038/nchembio.741.

    Article  PubMed  CAS  Google Scholar 

  173. Hajishengallis G, Lambris JD. Microbial manipulation of receptor crosstalk in innate immunity. Nat Rev Immunol. 2011;11:187–200. doi:10.1038/nri2918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sansonetti PJ. To be or not to be a pathogen: that is the mucosally relevant question. Mucosal Immunol. 2011;4:8–14. doi:10.1038/mi.2010.77.

    Article  CAS  PubMed  Google Scholar 

  175. Stuart LM, Paquette N, Boyer L. Effector-triggered versus pattern-triggered immunity: how animals sense pathogens. Nat Rev Immunol. 2013;13:199–206. doi:10.1038/nri3398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Srinivasan N. Telling apart friend from foe: discriminating between commensals and pathogens at mucosal sites. Innate Immun. 2010;16:391–404. doi:10.1177/1753425909357577.

    Article  CAS  PubMed  Google Scholar 

  177. Kamada N, Kim YG, Sham HP, Vallance BA, Puente JL, Martens EC, et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science. 2012;336:1325–9. doi:10.1126/science.1222195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kamada N, Seo SU, Chen GY, Núñez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13:321–35. doi:10.1038/nri3430.

    Article  CAS  PubMed  Google Scholar 

  179. De Palma G, Nadal I, Medina M, Donat E, Ribes-Koninckx C, Calabuig M, et al. Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol. 2010;10:63. doi:10.1186/1471-2180-10-63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Reikvam DH, Derrien M, Islam R, Erofeev A, Grcic V, Sandvik A, et al. Epithelial-microbial crosstalk in polymeric Ig receptor deficient mice. Eur J Immunol. 2012;42:2959–70. doi:10.1002/eji.201242543.

    Article  CAS  PubMed  Google Scholar 

  181. Kawamoto S, Tran TH, Maruya M, Suzuki K, Doi Y, Tsutsui Y, et al. The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science. 2012;336:485–9. doi:10.1126/science.1217718.

    Article  CAS  PubMed  Google Scholar 

  182. Tsuruta T, Inoue R, Nojima I, Tsukahara T, Hara H, Yajima T. The amount of secreted IgA may not determine the secretory IgA coating ratio of gastrointestinal bacteria. FEMS Immunol Med Microbiol. 2009;56:185–9. doi:10.1111/j.1574-695X.2009.00568.x.

    Article  CAS  PubMed  Google Scholar 

  183. Robles Alonso V, Guarner F. Linking the gut microbiota to human health. Br J Nutr. 2013;109 Suppl 2:S21–6. doi:10.1017/S0007114512005235.

    Article  CAS  PubMed  Google Scholar 

  184. van der Waaij LA, Kroese FG, Visser A, Nelis GF, Westerveld BD, Jansen PL, et al. Immunoglobulin coating of faecal bacteria in inflammatory bowel disease. Eur J Gastroenterol Hepatol. 2004;16:669–74.

    Article  PubMed  CAS  Google Scholar 

  185. Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis. 2015;26:26191. doi:10.3402/mehd.v26.26191.

    PubMed  Google Scholar 

  186. Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158:1000–10. doi:10.1016/j.cell.2014.08.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Shulzhenko N, Morgun A, Hsiao W, Battle M, Yao M, Gavrilova O, et al. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat Med. 2011;17:1585–93. doi:10.1038/nm.2505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Chorny A, Cerutti A. A gut triumvirate rules homeostasis. Nat Med. 2011;17:1549–50. doi:10.1038/nm.2592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31:677–89.

    Article  CAS  PubMed  Google Scholar 

  190. Ivanov II, Littman DR. Segmented filamentous bacteria take the stage. Mucosal Immunol. 2010;3:209–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Obata T, Goto Y, Kunisawa J, Sato S, Sakamoto M, Setoyama H, et al. Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis. Proc Natl Acad Sci U S A. 2010;107:7419–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. McDole JR, Wheeler LW, McDonald KG, Wang B, Konjufca V, Knoop KA, et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature. 2012;483:345–9. doi:10.1038/nature10863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Brandtzaeg P. Mucosal immunity in the healthy gut. In: Calder PC, Yaquob P, editors. Diet, immunity and inflammation. Cambridge: Woodhead Publishing; 2013. p. 34–80. Chapter 2. ISBN 978-0-85709-037-9.

    Chapter  Google Scholar 

  194. Latcham F, Merino F, Lang A, Garvey J, Thomson MA, Walker-Smith JA, et al. A consistent pattern of minor immunodeficiency and subtle enteropathy in children with multiple food allergy. J Pediatr. 2003;143:39–47.

    Article  PubMed  Google Scholar 

  195. van Odijk J, Kull I, Borres MP, Brandtzaeg P, Edberg U, Hanson LA, et al. Breastfeeding and allergic disease: a multidisciplinary review of the literature (1966–2001) on the mode of early feeding in infancy and its impact on later atopic manifestations. Allergy. 2003;58:833–43.

    Article  PubMed  Google Scholar 

  196. U.S. Department of Health. Breastfeeding and maternal and infant health outcomes in developed countries. Agency for Healthcare Research and Quality (AHRQ), Publication No. 07-E007, Evidence Report/Technology Assessment Report No. 153, 2007.

    Google Scholar 

  197. Høst A, Halken S, Muraro A, Dreborg S, Niggemann B, Aalberse R, et al. Dietary prevention of allergic diseases in infants and small children. Pediatr Allergy Immunol. 2008;19:1–4.

    Article  PubMed  Google Scholar 

  198. Gearry RB, Richardson AK, Frampton CM, Dodgshun AJ, Barclay ML. Population-based cases control study of inflammatory bowel disease risk factors. J Gastroenterol Hepatol. 2010;25:325–33.

    Article  PubMed  Google Scholar 

  199. Barclay AR, Russell RK, Wilson ML, Gilmour WH, Satsangi J, Wilson DC. Systematic review: the role of breastfeeding in the development of pediatric inflammatory bowel disease. J Pediatr. 2009;155:421–6.

    Article  PubMed  Google Scholar 

  200. Moffatt DC, Ilnyckyj A, Bernstein CN. A population-based study of breastfeeding in inflammatory bowel disease: initiation, duration, and effect on disease in the postpartum period. Am J Gastroenterol. 2009;104:2517–23.

    Article  PubMed  Google Scholar 

  201. Moscandrew M, Kane S. Inflammatory bowel diseases and management considerations: fertility and pregnancy. Curr Gastroenterol Rep. 2009;11:395–9.

    Article  PubMed  Google Scholar 

  202. Collins J. Breastfeeding in inflammatory bowel disease: positive results for mother and child. Inflamm Bowel Dis. 2011;17:663–4. doi:10.1002/ibd.21338.

    Article  PubMed  Google Scholar 

  203. Hanson LA. Session 1: Feeding and infant development breast-feeding and immune function. Proc Nutr Soc. 2007;66:384–96.

    Article  CAS  PubMed  Google Scholar 

  204. Abrahamsson TR, Sinkiewicz G, Jakobsson T, Fredrikson M, Björkstén B. Probiotic lactobacilli in breast milk and infant stool in relation to oral intake during the first year of life. J Pediatr Gastroenterol Nutr. 2009;49:349–54.

    Article  PubMed  Google Scholar 

  205. Donnet-Hughes A, Perez PF, Doré J, Leclerc M, Levenez F, Benyacoub J, et al. Potential role of the intestinal microbiota of the mother in neonatal immune education. Proc Nutr Soc. 2010;69:407–15.

    Article  PubMed  Google Scholar 

  206. Verhasselt V, Milcent V, Cazareth J, Kanda A, Fleury S, Dombrowicz D, et al. Breast milk-mediated transfer of an antigen induces tolerance and protection from allergic asthma. Nat Med. 2008;14:170–5.

    Article  CAS  PubMed  Google Scholar 

  207. Mosconi E, Rekima A, Seitz-Polski B, Kanda A, Fleury S, Tissandie E, et al. Breast milk immune complexes are potent inducers of oral tolerance in neonates and prevent asthma development. Mucosal Immunol. 2010;3:461–74.

    Article  CAS  PubMed  Google Scholar 

  208. Oddy WH, Rosales F. A systematic review of the importance of milk TGF-beta on immunological outcomes in the infant and young child. Pediatr Allergy Immunol. 2010;21(1 Pt 1):47–59.

    Article  PubMed  Google Scholar 

  209. Chapkin RS, Zhao C, Ivanov I, Davidson LA, Goldsby JS, Lupton JR, et al. Noninvasive stool-based detection of infant gastrointestinal development using gene expression profiles from exfoliated epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2010;298:G582–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Broere F, du Pré MF, van Berkel LA, Garssen J, Schmidt-Weber CB, Lambrecht BN, et al. Cyclooxygenase-2 in mucosal DC mediates induction of regulatory T cells in the intestine through suppression of IL-4. Mucosal Immunol. 2009;2:254–64.

    Article  CAS  PubMed  Google Scholar 

  211. Saurer L, Mueller C. T cell-mediated immunoregulation in the gastrointestinal tract. Allergy. 2009;64:505–19.

    Article  CAS  PubMed  Google Scholar 

  212. Westendorf AM, Fleissner D, Groebe L, Jung S, Gruber AD, Hansen W, et al. CD4+Foxp3+ regulatory T cell expansion induced by antigen-driven interaction with intestinal epithelial cells independent of local dendritic cells. Gut. 2009;58:211–9.

    Article  CAS  PubMed  Google Scholar 

  213. Rothberg RM, Farr RS. Anti-bovine serum albumin and anti-alpha lactalbumin in the serum of children and adults. Pediatrics. 1965;35:571–88.

    CAS  PubMed  Google Scholar 

  214. Scott H, Rognum TO, Midtvedt T, Brandtzaeg P. Age-related changes of human serum antibodies to dietary and colonic bacterial antigens measured by an enzyme-linked immunosorbent assay. Acta Pathol Microbiol Immunol Scand A. 1985;93:65–70.

    CAS  Google Scholar 

  215. Korenblat PE, Rothberg RM, Minden P, Farr RS. Immune responses of human adults after oral and parenteral exposure to bovine serum albumin. J Allergy. 1968;41:226–35.

    Article  CAS  PubMed  Google Scholar 

  216. Husby S, Mestecky J, Moldoveanu Z, Holland S, Elson CO. Oral tolerance in humans. T cell but not B cell tolerance after antigen feeding. J Immunol. 1994;152:4663–70.

    CAS  PubMed  Google Scholar 

  217. Waldo FB, van den Wall Bake AW, Mestecky J, Husby S. Suppression of the immune response by nasal immunization. Clin Immunol Immunopathol. 1994;72:30–4.

    Article  CAS  PubMed  Google Scholar 

  218. Kraus TA, Toy L, Chan L, Childs J, Mayer L. Failure to induce oral tolerance to a soluble protein in patients with inflammatory bowel disease. Gastroenterology. 2004;126:1771–8.

    Article  CAS  PubMed  Google Scholar 

  219. Kraus TA, Cheifetz A, Toy L, Meddings JB, Mayer L. Evidence for a genetic defect in oral tolerance induction in inflammatory bowel disease. Inflamm Bowel Dis. 2006;12:82–8.

    Article  PubMed  Google Scholar 

  220. Qiao L, Braunstein J, Golling M, Schürmann G, Autschbach F, Möller P, et al. Differential regulation of human T cell responsiveness by mucosal versus blood monocytes. Eur J Immunol. 1996;26:922–7.

    Article  CAS  PubMed  Google Scholar 

  221. Hausmann M, Kiessling S, Mestermann S, Webb G, Spöttl T, Andus T, et al. Toll-like receptors 2 and 4 are up-regulated during intestinal inflammation. Gastroenterology. 2002;122:1987–2000.

    Article  CAS  PubMed  Google Scholar 

  222. Rugtveit J, Nilsen EM, Bakka A, Carlsen H, Brandtzaeg P, Scott H. Cytokine profiles differ in newly recruited and resident subsets of mucosal macrophages from inflammatory bowel disease. Gastroenterology. 1997;112:1493–505.

    Article  CAS  PubMed  Google Scholar 

  223. Smythies LE, Sellers M, Clements RH, Mosteller-Barnum M, Meng G, Benjamin WH, et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J Clin Invest. 2005;115:66–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Smith PD, Smythies LE, Shen R, Greenwell-Wild T, Gliozzi M, Wahl SM. Intestinal macrophages and response to microbial encroachment. Mucosal Immunol. 2011;4:31–42.

    Article  PubMed  CAS  Google Scholar 

  225. Weber B, Saurer L, Mueller C. Intestinal macrophages: differentiation and involvement in intestinal immunopathologies. Semin Immunopathol. 2009;31:171–84.

    Article  CAS  PubMed  Google Scholar 

  226. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science. 2010;327:656–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Denning TL, Wang YC, Patel SR, Williams IR, Pulendran B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol. 2007;8:1086–94.

    Article  CAS  PubMed  Google Scholar 

  228. Rescigno M. Before they were gut dendritic cells. Immunity. 2009;31:454–6.

    Article  CAS  PubMed  Google Scholar 

  229. Cheong C, Matos I, Choi JH, Dandamudi DB, Shrestha E, Longhi MP, et al. Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209+ dendritic cells for immune T cell areas. Cell. 2010;143:416–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Schulz O, Jaensson E, Persson EK, Liu X, Worbs T, Agace WW, et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J Exp Med. 2009;206:3101–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Mazzini E, Massimiliano L, Penna G, Rescigno M. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1+ macrophages to CD103+ dendritic cells. Immunity. 2014;40:248–61. doi:10.1016/j.immuni.2013.12.012.

    Article  CAS  PubMed  Google Scholar 

  232. Shakhar G, Kolesnikov M. Intestinal macrophages and DCs close the gap on tolerance. Immunity. 2014;40:171–3. doi:10.1016/j.immuni.2014.01.008.

    Article  CAS  PubMed  Google Scholar 

  233. Matteoli G, Mazzini E, Iliev ID, Mileti E, Fallarino F, Puccetti P, et al. Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut. 2010;59:595–604.

    Article  CAS  PubMed  Google Scholar 

  234. Rescigno M. Intestinal dendritic cells. Adv Immunol. 2010;107:109–38.

    Article  CAS  PubMed  Google Scholar 

  235. Grindebacke H, Stenstad H, Quiding-Järbrink M, Waldenström J, Adlerberth I, Wold AE, et al. Dynamic development of homing receptor expression and memory cell differentiation of infant CD4+CD25high regulatory T cells. J Immunol. 2009;183:4360–70.

    Article  CAS  PubMed  Google Scholar 

  236. Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A, Wagner N, et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity. 2011;34:237–46. doi:10.1016/j.immuni.2011.01.016.

    Article  CAS  PubMed  Google Scholar 

  237. Hammerschmidt SI, Ahrendt M, Bode U, Wahl B, Kremmer E, Förster R, et al. Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo. J Exp Med. 2008;205:2483–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Jaensson-Gyllenbäck E, Kotarsky K, Zapata F, Persson EK, Gundersen TE, Blomhoff R, et al. Bile retinoids imprint intestinal CD103+ dendritic cells with the ability to generate gut-tropic T cells. Mucosal Immunol. 2011;4:438–47. doi:10.1038/mi.2010.91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Pantazi E, Marks E, Stolarczyk E, Lycke N, Noelle RJ, Elgueta R. Cutting edge: retinoic acid signaling in B cells is essential for oral immunization and microflora composition. J Immunol. 2015;195:1368–71. doi:10.4049/jimmunol.1500989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Belkaid Y, Oldenhove G. Tuning microenvironments: induction of regulatory T cells by dendritic cells. Immunity. 2008;29:362–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Horwitz DA, Zheng SG, Gray JD. Natural and TGF-β-induced Foxp3+CD4+ CD25+ regulatory T cells are not mirror images of each other. Trends Immunol. 2008;29:429–35.

    Article  CAS  PubMed  Google Scholar 

  242. Barnes MJ, Powrie F. Regulatory T cells reinforce intestinal homeostasis. Immunity. 2009;31:401–11.

    Article  CAS  PubMed  Google Scholar 

  243. Sakaguchi S, Wing K, Yamaguchi T. Dynamics of peripheral tolerance and immune regulation mediated by Treg. Eur J Immunol. 2009;39:2331–6.

    Article  CAS  PubMed  Google Scholar 

  244. Akbar AN, Vukmanovic-Stejic M, Taams LS, Macallan DC. The dynamic co-evolution of memory and regulatory CD4+ T cells in the periphery. Nat Rev Immunol. 2007;7:231–7.

    Article  CAS  PubMed  Google Scholar 

  245. Booth NJ, McQuaid AJ, Sobande T, Kissane S, Agius E, Jackson SE, et al. Different proliferative potential and migratory characteristics of human CD4+ regulatory T cells that express either CD45RA or CD45RO. J Immunol. 2010;184:4317–26.

    Article  CAS  PubMed  Google Scholar 

  246. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009;30:899–911.

    Article  CAS  PubMed  Google Scholar 

  247. Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10:490–500.

    Article  CAS  PubMed  Google Scholar 

  248. Sakaguchi S. Immunology: Conditional stability of T cells. Nature. 2010;468:41–2.

    Article  CAS  PubMed  Google Scholar 

  249. Verhasselt V. Oral tolerance in neonates: from basics to potential prevention of allergic disease. Mucosal Immunol. 2010;3:326–33.

    Article  CAS  PubMed  Google Scholar 

  250. Honda K, Takeda K. Regulatory mechanisms of immune responses to intestinal bacteria. Mucosal Immunol. 2009;2:187–96.

    Article  CAS  PubMed  Google Scholar 

  251. Schnoeller C, Rausch S, Pillai S, Avagyan A, Wittig BM, Loddenkemper C, et al. A helminth immunomodulator reduces allergic and inflammatory responses by induction of IL-10-producing macrophages. J Immunol. 2008;180:4265–72.

    Article  CAS  PubMed  Google Scholar 

  252. Weinstock JV, Elliott DE. Helminths and the IBD hygiene hypothesis. Inflamm Bowel Dis. 2009;15:128–33.

    Article  PubMed  Google Scholar 

  253. Grainger JR, Smith KA, Hewitson JP, McSorley HJ, Harcus Y, Filbey KJ, et al. Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-β pathway. J Exp Med. 2010;207:2331–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Harnett W, Harnett MM. Helminth-derived immunomodulators: can understanding the worm produce the pill? Nat Rev Immunol. 2010;10:278–84.

    Article  CAS  PubMed  Google Scholar 

  255. Blümer N, Herz U, Wegmann M, Renz H. Prenatal lipopolysaccharide-exposure prevents allergic sensitization and airway inflammation, but not airway responsiveness in a murine model of experimental asthma. Clin Exp Allergy. 2005;35:397–402.

    Article  PubMed  CAS  Google Scholar 

  256. Gerhold K, Avagyan A, Seib C, Frei R, Steinle J, Ahrens B, et al. Prenatal initiation of endotoxin airway exposure prevents subsequent allergen-induced sensitization and airway inflammation in mice. J Allergy Clin Immunol. 2006;118:666–73.

    Article  CAS  PubMed  Google Scholar 

  257. Eder W, von Mutius E. Genetics in asthma: the solution to a lasting conundrum? Allergy. 2005;60:1482–4.

    Article  CAS  PubMed  Google Scholar 

  258. Hong X, Tsai HJ, Wang X. Genetics of food allergy. Curr Opin Pediatr. 2009;21:770–6.

    Article  PubMed  PubMed Central  Google Scholar 

  259. Mathew CG, Lewis CM. Genetics of inflammatory bowel disease: progress and prospects. Hum Mol Genet. 2004;13(Spec No 1): R161–8.

    Article  CAS  PubMed  Google Scholar 

  260. Marks DJ, Harbord MW, MacAllister R, Rahman FZ, Young J, Al-Lazikani B, et al. Defective acute inflammation in Crohn’s disease: a clinical investigation. Lancet. 2006;367:668–78. Erratum in: Lancet. 2007;370:318.

    Article  CAS  PubMed  Google Scholar 

  261. Fallon PG, Mangan NE. Suppression of TH2-type allergic reactions by helminth infection. Nat Rev Immunol. 2007;7:220–30.

    Article  CAS  PubMed  Google Scholar 

  262. Tang ML. Probiotics and prebiotics: immunological and clinical effects in allergic disease. In: Brandtzaeg P, Isolauri E, Prescott SL, editors. Microbial–host interaction: tolerance versus allergy. Nestlé nutr. workshop ser pediatr progr., vol 64. Basel: Nestec Ltd., Vevey/S, Karger AG; 2009. p. 219–38.

    Google Scholar 

  263. Hedin CR, Mullard M, Sharratt E, Jansen C, Sanderson JD, Shirlaw P, et al. Probiotic and prebiotic use in patients with inflammatory bowel disease: a case-control study. Inflamm Bowel Dis. 2010;16:2099–108.

    Article  PubMed  Google Scholar 

  264. Salminen S, Collado MC, Isolauri E, Gueimonde M. Microbial-host interactions: selecting the right probiotics and prebiotics for infants. In: Brandtzaeg P, Isolauri E, Prescott SL, editors. Microbial–host interaction: tolerance versus allergy. Nestlé Nutr Workshop Ser Pediatr Progr, vol 64. Basel: Nestec Ltd., Vevey/S, Karger AG; 2009. p. 201–17.

    Google Scholar 

  265. Hörmannsperger G, Haller D. Molecular crosstalk of probiotic bacteria with the intestinal immune system: clinical relevance in the context of inflammatory bowel disease. Int J Med Microbiol. 2010;300:63–73.

    Article  PubMed  CAS  Google Scholar 

  266. Mileti E, Matteoli G, Iliev ID, Rescigno M. Comparison of the immunomodulatory properties of three probiotic strains of Lactobacilli using complex culture systems: prediction for in vivo efficacy. PLoS One. 2009;4:e7056.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  267. Rancé F, Boguniewicz M, Lau S. New visions for atopic eczema: an iPAC summary and future trends. Pediatr Allergy Immunol. 2008;19 Suppl 19:17–25.

    Article  PubMed  Google Scholar 

  268. Vercelli D. Discovering susceptibility genes for asthma and allergy. Nat Rev Immunol. 2008;8:169–82.

    Article  CAS  PubMed  Google Scholar 

  269. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F, et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature. 2010;466:334–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Guo PF, Du MR, Wu HX, Lin Y, Jin LP, Li DJ. Thymic stromal lymphopoietin from trophoblasts induces dendritic cell-mediated regulatory TH2 bias in the deciduas during early gestation in humans. Blood. 2010;116:2061–9.

    Article  CAS  PubMed  Google Scholar 

  272. Herz U, Lacy P, Renz H, Erb K. The influence of infections on the development and severity of allergic disorders. Curr Opin Immunol. 2000;12:632–40.

    Article  CAS  PubMed  Google Scholar 

  273. Isolauri E, Grönlund MM, Salminen S, Arvilommi H. Why don’t we bud? J Pediatr Gastroenterol Nutr. 2000;30:214–6.

    Article  CAS  PubMed  Google Scholar 

  274. Prescott SL, Macaubas C, Holt BJ, Smallacombe TB, Loh R, Sly PD, et al. Transplacental priming of the human immune system to environmental allergens: universal skewing of initial T cell responses toward the Th2 cytokine profile. J Immunol. 1998;160:4730–7.

    CAS  PubMed  Google Scholar 

  275. Michaëlsson J, Mold JE, McCune JM, Nixon DF. Regulation of T cell responses in the developing human fetus. J Immunol. 2006;176:5741–8.

    Article  PubMed  Google Scholar 

  276. Cupedo T, Nagasawa M, Weijer K, Blom B, Spits H. Development and activation of regulatory T cells in the human fetus. Eur J Immunol. 2005;35:383–90.

    Article  CAS  PubMed  Google Scholar 

  277. Darrasse-Jèze G, Marodon G, Salomon BL, Catala M, Klatzmann D. Ontogeny of CD4+CD25+ regulatory/suppressor T cells in human fetuses. Blood. 2005;105:4715–21.

    Article  PubMed  CAS  Google Scholar 

  278. Renz H, Pfefferle PI, Teich R, Garn H. Development and regulation of immune responses to food antigens in pre- and postnatal life. In: Brandtzaeg P, Isolauri E, Prescott SL, editors. Microbial–host interaction: tolerance versus allergy. Nestlé Nutr Workshop Ser Pediatr Progr, vol 64. Basel: Nestec Ltd., Vevey/S, Karger AG; 2009. p. 139–57.

    Google Scholar 

  279. Huehn J, Polansky JK, Hamann A. Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat Rev Immunol. 2009;9:83–9.

    Article  CAS  PubMed  Google Scholar 

  280. Wilson CB, Rowell E, Sekimata M. Epigenetic control of T-helper-cell differentiation. Nat Rev Immunol. 2009;9:91–105.

    Article  CAS  PubMed  Google Scholar 

  281. Conrad ML, Ferstl R, Teich R, Brand S, Blümer N, Yildirim AO, et al. Maternal TLR signaling is required for prenatal asthma protection by the nonpathogenic microbe Acinetobacter lwoffii F78. J Exp Med. 2009;206:2869–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Takahashi K, Sugi Y, Hosono A, Kaminogawa S. Epigenetic regulation of TLR4 gene expression in intestinal epithelial cells for the maintenance of intestinal homeostasis. J Immunol. 2009;183:6522–9.

    Article  CAS  PubMed  Google Scholar 

  283. Alford SH, Zoratti E, Peterson EL, Maliarik M, Ownby DR, Johnson CC. Parental history of atopic disease: disease pattern and risk of pediatric atopy in offspring. J Allergy Clin Immunol. 2004;114:1046–50.

    Article  PubMed  Google Scholar 

  284. Thompson AI, Lees CW. Genetics of ulcerative colitis. Inflamm Bowel Dis. 2011;17:831–48. doi:10.1002/ibd.21375.

    Article  PubMed  Google Scholar 

  285. Renz H, Blümer N, Virna S, Sel S, Garn H. The immunological basis of the hygiene hypothesis. In: Crameri R, editor. The environment. allergy and asthma in modern society: a scientific approach. Chem Immunol Allergy, vol 91. Basel: Karger; 2006. p. 30–48.

    Google Scholar 

  286. van der Kleij D, Latz E, Brouwers JF, Kruize YC, Schmitz M, Kurt-Jones EA, et al. A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates Toll-like receptor 2 and affects immune polarization. J Biol Chem. 2002;277:48122–9.

    Article  PubMed  Google Scholar 

  287. Sepp E, Julge K, Vasar M, Naaber P, Björksten B, Mikelsaar M. Intestinal microflora of Estonian and Swedish infants. Acta Paediatr. 1997;86:956–61.

    Article  CAS  PubMed  Google Scholar 

  288. Björkstén B, Naaber P, Sepp E, Mikelsaar M. The intestinal microflora in allergic Estonian and Swedish 2-year-old children. Clin Exp Allergy. 1999;29:342–6.

    Article  PubMed  Google Scholar 

  289. Kalliomäki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol. 2001;107:129–34.

    Article  PubMed  Google Scholar 

  290. Kuitunen M, Kukkonen K, Juntunen-Backman K, Korpela R, Poussa T, Tuure T, et al. Probiotics prevent IgE-associated allergy until age 5 years in cesarean-delivered children but not in the total cohort. J Allergy Clin Immunol. 2009;123:335–41.

    Article  PubMed  Google Scholar 

  291. Zeiger RS. Dietary aspects of food allergy prevention in infants and children. J Pediatr Gastroenterol Nutr. 2000;30(Suppl):S77–86.

    Article  PubMed  Google Scholar 

  292. Prescott SL. Role of dietary immunomodulatory factors in the development of immune tolerance. In: Brandtzaeg P, Isolauri E, Prescott SL, editors. Microbial–host interaction: tolerance versus allergy. Nestlé Nutr Workshop Ser Pediatr Progr, vol 64. Basel: Nestec Ltd., Vevey/S, Karger AG; 2009. p. 185–200.

    Google Scholar 

  293. Rautava S, Luoto R, Salminen S, Isolauri E. Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol. 2012;9:565–76. doi:10.1038/nrgastro.2012.144.

    Article  CAS  PubMed  Google Scholar 

  294. Miettinen M, Matikainen S, Vuopio-Varkila J, Pirhonen J, Varkila K, Kurimoto M, et al. Lactobacilli and streptococci induce interleukin-12 (IL-12), IL-18, and gamma interferon production in human peripheral blood mononuclear cells. Infect Immun. 1998;66:6058–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  295. Hessle C, Hanson LA, Wold AE. Lactobacilli from human gastrointestinal mucosa are strong stimulators of IL-12 production. Clin Exp Immunol. 1999;116:276–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Hessle C, Andersson B, Wold AE. Gram-positive bacteria are potent inducers of monocytic interleukin-12 (IL-12) while gram-negative bacteria preferentially stimulate IL-10 production. Infect Immun. 2000;68:3581–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Caramalho I, Lopes-Carvalho T, Ostler D, Zelenay S, Haury M, Demengeot J. Regulatory T cells selectively express Toll-like receptors and are activated by lipopolysaccharide. J Exp Med. 2003;197:403–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Murai M, Turovskaya O, Kim G, Madan R, Karp CL, Cheroutre H, et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat Immunol. 2009;10:1178–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science. 2000;289:1352–5.

    Article  CAS  PubMed  Google Scholar 

  300. Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio CW, Santacruz N, et al. Peripheral education of the immune system by colonic commensal microbiota. Nature. 2011;478:250–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Josefowicz SZ, Niec RE, Kim HY, Treuting P, Chinen T, Zheng Y, et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature. 2012;482:395–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Geijtenbeek TB, den Dunnen J, Gringhuis SI. Pathogen recognition by DC-SIGN shapes adaptive immunity. Future Microbiol. 2009;4:879–90.

    Article  CAS  PubMed  Google Scholar 

  303. Zhou Y, Kawasaki H, Hsu SC, Lee RT, Yao X, Plunkett B, et al. Oral tolerance to food-induced systemic anaphylaxis mediated by the C-type lectin SIGNR1. Nat Med. 2010;16:1128–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. O’Mahony C, Scully P, O’Mahony D, Murphy S, O’Brien F, Lyons A, et al. Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-kB activation. PLoS Pathog. 2008;4:e1000112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  305. Lee JH, Ulrich B, Cho J, Park J, Kim CH. Progesterone promotes differentiation of human cord blood fetal T cells into T regulatory cells but suppresses their differentiation into Th17 cells. J Immunol. 2011;187:1778–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331:337–41.

    Article  CAS  PubMed  Google Scholar 

  307. Reading NC, Kasper DL. The starting lineup: key microbial players in intestinal immunity and homeostasis. Front Microbiol. 2011;2:148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Baklien K, Brandtzaeg P. Comparative mapping of the local distribution of immunoglobulin-containing cells in ulcerative colitis and Crohn’s disease of the colon. Clin Exp Immunol. 1975;22:197–209.

    CAS  PubMed  PubMed Central  Google Scholar 

  309. Brandtzaeg P. The changing immunological paradigm in coeliac disease. Immunol Lett. 2006;105:127–39.

    Article  CAS  PubMed  Google Scholar 

  310. Brandtzaeg P. Update on mucosal immunoglobulin A in gastrointestinal disease. Curr Opin Gastroenterol. 2010;26:554–63.

    Article  CAS  PubMed  Google Scholar 

  311. Kleessen B, Kroesen AJ, Buhr HJ, et al. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand J Gastroenterol. 2002;37:1034–41.

    Article  CAS  PubMed  Google Scholar 

  312. Kett K, Rognum TO, Brandtzaeg P. Mucosal subclass distribution of immunoglobulin G-producing cells is different in ulcerative colitis and Crohn’s disease of the colon. Gastroenterology. 1987;93:919–24.

    Article  CAS  PubMed  Google Scholar 

  313. Helgeland L, Tysk C, Järnerot G, et al. The IgG subclass distribution in serum and rectal mucosa of monozygotic twins with or without inflammatory bowel disease. Gut. 1992;33:1358–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Brandtzaeg P, Korsrud FR. Significance of different J-chain profiles in human tissues: generation of IgA and IgM with binding site for secretory component is related to the J-chain expressing capacity of the total local immunocyte population, including IgG- and IgD-producing cells, and depends on the clinical state of the tissue. Clin Exp Immunol. 1984;58:709–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  315. Kett K, Brandtzaeg P. Local IgA subclass alterations in ulcerative colitis and Crohn’s disease of the colon. Gut. 1987;28:1013–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Kett K, Brandtzaeg P, Fausa O. J-chain expression is more prominent in immunoglobulin A2 than in immunoglobulin A1 colonic immunocytes and is decreased in both subclasses associated with inflammatory bowel disease. Gastroenterology. 1988;94:1419–25.

    Article  CAS  PubMed  Google Scholar 

  317. Van Den Bogaerde J, Cahill J, Emmanuel AV, et al. Gut mucosal response to food antigens in Crohn’s disease. Aliment Pharmacol Ther. 2002;16:1903–15.

    Article  Google Scholar 

  318. Montaldo E, Vitale C, Cottalasso F, Conte R, Glatzer T, Ambrosini P, et al. Human NK cells at early stages of differentiation produce CXCL8 and express CD161 molecule that functions as an activating receptor. Blood. 2012;119:3987–96. doi:10.1182/blood-2011-09-379693.

    Article  CAS  PubMed  Google Scholar 

  319. Cella M, Fuchs A, Vermi W, Facchetti F, Otero K, Lennerz JK, et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature. 2009;457:722–5. doi:10.1038/nature07537.

    Article  CAS  PubMed  Google Scholar 

  320. Cupedo T, Crellin NK, Papazian N, Rombouts EJ, Weijer K, Grogan JL, et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat Immunol. 2009;10:66–74. doi:10.1038/ni.1668.

    Article  CAS  PubMed  Google Scholar 

  321. Kurashima Y, Goto Y, Kiyono H. Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation. Eur J Immunol. 2013;43:3108–15. doi:10.1002/eji.201343782.

    Article  CAS  PubMed  Google Scholar 

  322. Diefenbach A, Colonna M, Koyasu S. Development, differentiation, and diversity of innate lymphoid cells. Immunity. 2014;41:354–65. doi:10.1016/j.immuni.2014.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD, et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity. 2013;38:769–81. doi:10.1016/j.immuni.2013.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Van Kaer L, Algood HM, Singh K, Parekh VV, Greer MJ, Piazuelo MB, et al. CD8αα+ innate-type lymphocytes in the intestinal epithelium mediate mucosal immunity. Immunity. 2014;41:451–64. doi:10.1016/j.immuni.2014.08.010. Erratum in: Immunity. 2014;41:1064.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  325. Napier RJ, Adams EJ, Gold MC, Lewinsohn DM. The role of mucosal associated invariant T cells in antimicrobial immunity. Front Immunol. 2015;6:344. doi:10.3389/fimmu.2015.00344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  326. Macpherson A, Khoo UY, Forgacs I, et al. Mucosal antibodies in inflammatory bowel disease are directed against intestinal bacteria. Gut. 1996;38:365–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Foo MC, Lee A. Immunological response of mice to members of the autochthonous intestinal microflora. Infect Immun. 1972;6:525–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  328. Berg RD, Savage DC. Immune responses of specific pathogen-free and gnotobiotic mice to antigens of indigenous and nonindigenous microorganisms. Infect Immun. 1975;11:320–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  329. Slack E, Hapfelmeier S, Stecher B, et al. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science. 2009;325:617–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Landers CJ, Cohavy O, Misra R, et al. Selected loss of tolerance evidenced by Crohn’s disease-associated immune responses to auto- and microbial antigens. Gastroenterology. 2002;123:689–99.

    Article  CAS  PubMed  Google Scholar 

  331. Garrett WS, Gallini CA, Yatsunenko T, Michaud M, DuBois A, Delaney ML, et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe. 2010;8:292–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Garrett WS, Gordon JI, Glimcher LH. Homeostasis and inflammation in the intestine. Cell. 2010;140:859–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Boirivant M, Amendola A, Butera A, Sanchez M, Xu L, Marinaro M, et al. A transient breach in the epithelial barrier leads to regulatory T-cell generation and resistance to experimental colitis. Gastroenterology. 2008;135:1612–23.e5.

    Google Scholar 

  334. Karlsson MR, Rugtveit J, Brandtzaeg P. Allergen-responsive CD+CD25+ regulatory T cells in children who have outgrown cow’s milk allergy. J Exp Med. 2004;199:1679–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Hege Eliassen is thanked for excellent secretarial assistance. The author is supported by the Research Council of Norway through its Centers of Excellence funding scheme (Project No. 179573/V40), and by the Department of Pathology, Oslo University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Brandtzaeg M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Brandtzaeg, P. (2017). Role of the Intestinal Immune System in Health. In: Baumgart, D. (eds) Crohn's Disease and Ulcerative Colitis. Springer, Cham. https://doi.org/10.1007/978-3-319-33703-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33703-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33701-2

  • Online ISBN: 978-3-319-33703-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics