Skip to main content

Immune Cells: Monocytes and Macrophages

  • Chapter
  • First Online:
Crohn's Disease and Ulcerative Colitis

Abstract

Monocytes originate and develop from progenitor cells in the bone marrow before they enter blood circulation. They are characterized by a typical morphology and a set of characteristic surface antigens such as CD14 (part of the LPS receptor) or CD16 (Fc receptor). Monocytes play an important role in the innate immune response to pathogens, i.e., they show a rapid and dramatic response to bacterial surface molecules such as lipopolysaccharide (LPS). Monocytes influence T- and B-cell maturation as well as differentiation by secreted cytokines and direct cell–cell contact. Three functional subsets of human monocytes have been identified with some overlap between the types in humans.

After leaving the blood stream and migrating into organs and tissues monocytes differentiate into tissue macrophages or dendritic cells. Macrophages play a key role in the process of inflammation in many different tissues. They are able to secrete proinflammatory cytokines and chemokines (such as IL-1, TNF, IL-6, IL-8, MCP-1), free oxygen radicals, proteases, and other tissue-degrading enzymes. Intestinal macrophages represent one of the largest compartments of the mononuclear phagocyte system in the human body. They are localized mainly in the subepithelial region and constitute 10–20 % of mononuclear cells in the intestinal lamina propria. Normal intestinal macrophages show a differentiation into an anergic and “tolerogenic” phenotype that may be important for the mediation of tolerance to food antigens and commensal bacteria. These tolerogenic intestinal tissue macrophages (M2 type macrophages) and on the other hand newly infiltrating activated inflammatory macrophages (M1 type macrophages) are thought to play an important role in the pathogenesis of IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol. 2014;5:514.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Moretta A, Marcenaro E, Sivori S, Della Chiesa M, Vitale M, Moretta L. Early liaisons between cells of the innate immune system in inflamed peripheral tissues. Trends Immunol. 2005;26:668–75.

    Article  CAS  PubMed  Google Scholar 

  3. Liddiard K, Taylor PR. Understanding local macrophage phenotypes in disease: shape-shifting macrophages. Nat Med. 2015;21:119–20.

    Article  CAS  PubMed  Google Scholar 

  4. Mann ER, Li X. Intestinal antigen-presenting cells in mucosal immune homeostasis: crosstalk between dendritic cells, macrophages and B-cells. World J Gastroenterol. 2014;20:9653–64.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bain CC, Mowat AM. Macrophages in intestinal homeostasis and inflammation. Immunol Rev. 2014;260:102–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Steinbach EC, Plevy SE. The role of macrophages and dendritic cells in the initiation of inflammation in IBD. Inflamm Bowel Dis. 2014;20:166–75.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Spoettl T, Hausmann M, Menzel K, Piberger H, Herfarth H, Schoelmerich J, et al. Role of soluble factors and three-dimensional culture in in vitro differentiation of intestinal macrophages. World J Gastroenterol. 2007;13:1032–41.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Spottl T, Hausmann M, Kreutz M, Peuker A, Vogl D, Scholmerich J, et al. Monocyte differentiation in intestine-like macrophage phenotype induced by epithelial cells. J Leukoc Biol. 2001;70:241–51.

    CAS  PubMed  Google Scholar 

  9. Hausmann M, Bataille F, Spoettl T, Schreiter K, Falk W, Schoelmerich J, et al. Physiological role of macrophage inflammatory protein-3 alpha induction during maturation of intestinal macrophages. J Immunol. 2005;175:1389–98.

    Article  CAS  PubMed  Google Scholar 

  10. Hausmann M, Obermeier F, Schreiter K, Spottl T, Falk W, Scholmerich J, et al. Cathepsin D is up-regulated in inflammatory bowel disease macrophages. Clin Exp Immunol. 2004;136:157–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hausmann M, Spottl T, Andus T, Rothe G, Falk W, Scholmerich J, et al. Subtractive screening reveals up-regulation of NADPH oxidase expression in Crohn’s disease intestinal macrophages. Clin Exp Immunol. 2001;125:48–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rogler G, Hausmann M, Spottl T, Vogl D, Aschenbrenner E, Andus T, et al. T-cell co-stimulatory molecules are upregulated on intestinal macrophages from inflammatory bowel disease mucosa. Eur J Gastroenterol Hepatol. 1999;11:1105–11.

    Article  CAS  PubMed  Google Scholar 

  13. Rogler G, Hausmann M, Vogl D, Aschenbrenner E, Andus T, Falk W, et al. Isolation and phenotypic characterization of colonic macrophages. Clin Exp Immunol. 1998;112:205–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rogler G, Brand K, Vogl D, Page S, Hofmeister R, Andus T, et al. Nuclear factor kappaB is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology. 1998;115:357–69.

    Article  CAS  PubMed  Google Scholar 

  15. Rogler G, Andus T, Aschenbrenner E, Vogl D, Falk W, Scholmerich J, et al. Alterations of the phenotype of colonic macrophages in inflammatory bowel disease. Eur J Gastroenterol Hepatol. 1997;9:893–9.

    Article  CAS  PubMed  Google Scholar 

  16. Ziegler-Heitbrock L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol. 2007;81:584–92.

    Article  CAS  PubMed  Google Scholar 

  17. Kumar S, Jack R. Origin of monocytes and their differentiation to macrophages and dendritic cells. J Endotoxin Res. 2006;12:278–84.

    CAS  PubMed  Google Scholar 

  18. Chakarov S, Fazilleau N. Monocyte-derived dendritic cells promote T follicular helper cell differentiation. EMBO Mol Med. 2014;6:590–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Slingluff Jr CL, Petroni GR, Olson WC, Smolkin ME, Ross MI, Haas NB, et al. Effect of granulocyte/macrophage colony-stimulating factor on circulating CD8+ and CD4+ T-cell responses to a multipeptide melanoma vaccine: outcome of a multicenter randomized trial. Clin Cancer Res. 2009;15:7036–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ziegler-Heitbrock L. Monocyte subsets in man and other species. Cell Immunol. 2014;289:135–9.

    Article  CAS  PubMed  Google Scholar 

  21. Wong KL, Yeap WH, Tai JJ, Ong SM, Dang TM, Wong SC. The three human monocyte subsets: implications for health and disease. Immunol Res. 2012;53:41–57.

    Article  CAS  PubMed  Google Scholar 

  22. Weiss G, Schaible UE. Macrophage defense mechanisms against intracellular bacteria. Immunol Rev. 2015;264:182–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sica A, Erreni M, Allavena P, Porta C. Macrophage polarization in pathology. Cell Mol Life Sci. 2015;72(21):4111–26.

    Article  CAS  PubMed  Google Scholar 

  24. Motwani MP, Gilroy DW. Macrophage development and polarization in chronic inflammation. Semin Immunol. 2015;27:257–66.

    Article  PubMed  Google Scholar 

  25. Brandtzaeg P. Nature and function of gastrointestinal antigen-presenting cells. Allergy. 2001;56 Suppl 67:16–20.

    Article  PubMed  Google Scholar 

  26. Schultze JL, Freeman T, Hume DA, Latz E. A transcriptional perspective on human macrophage biology. Semin Immunol. 2015;27:44–50.

    Article  CAS  PubMed  Google Scholar 

  27. Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol. 2011;11:750–61.

    Article  CAS  PubMed  Google Scholar 

  28. Hume DA, Wells CA, Ravasi T. Transcriptional regulatory networks in macrophages. Novartis Found Symp. 2007;281:2–18. discussion –24, 50–3, 208–9.

    Article  CAS  PubMed  Google Scholar 

  29. Hawiger J. Innate immunity and inflammation: a transcriptional paradigm. Immunol Res. 2001;23:99–109.

    Article  CAS  PubMed  Google Scholar 

  30. Hausmann M, Kiessling S, Mestermann S, Webb G, Spottl T, Andus T, et al. Toll-like receptors 2 and 4 are up-regulated during intestinal inflammation. Gastroenterology. 2002;122:1987–2000.

    Article  CAS  PubMed  Google Scholar 

  31. Hetzenecker AM, Seidl MC, Kosovac K, Herfarth H, Kellermeier S, Obermeier F, et al. Downregulation of the ubiquitin-proteasome system in normal colonic macrophages and reinduction in inflammatory bowel disease. Digestion. 2012;86:34–47.

    Article  CAS  PubMed  Google Scholar 

  32. Abdelouhab K, Rafa H, Toumi R, Bouaziz S, Medjeber O, Touil-Boukoffa C. Mucosal intestinal alteration in experimental colitis correlates with nitric oxide production by peritoneal macrophages: effect of probiotics and prebiotics. Immunopharmacol Immunotoxicol. 2012;34:590–7.

    Article  CAS  PubMed  Google Scholar 

  33. Crielaard BJ, Lammers T, Morgan ME, Chaabane L, Carboni S, Greco B, et al. Macrophages and liposomes in inflammatory disease: friends or foes? Int J Pharm. 2011;416:499–506.

    Article  CAS  PubMed  Google Scholar 

  34. Ghia JE, Galeazzi F, Ford DC, Hogaboam CM, Vallance BA, Collins S. Role of M-CSF-dependent macrophages in colitis is driven by the nature of the inflammatory stimulus. Am J Physiol Gastrointest Liver Physiol. 2008;294:G770–7.

    Article  CAS  PubMed  Google Scholar 

  35. Barth MW, Hendrzak JA, Melnicoff MJ, Morahan PS. Review of the macrophage disappearance reaction. J Leukoc Biol. 1995;57:361–7.

    CAS  PubMed  Google Scholar 

  36. Spoettl T, Hausmann M, Herlyn M, Gunckel M, Dirmeier A, Falk W, et al. Monocyte chemoattractant protein-1 (MCP-1) inhibits the intestinal-like differentiation of monocytes. Clin Exp Immunol. 2006;145:190–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schmall A, Al-Tamari HM, Herold S, Kampschulte M, Weigert A, Wietelmann A, et al. Macrophage and cancer cell cross-talk via CCR2 and CX3CR1 is a fundamental mechanism driving lung cancer. Am J Respir Crit Care Med. 2015;191:437–47.

    Article  CAS  PubMed  Google Scholar 

  38. Lionakis MS, Swamydas M, Fischer BG, Plantinga TS, Johnson MD, Jaeger M, et al. CX3CR1-dependent renal macrophage survival promotes Candida control and host survival. J Clin Invest. 2013;123:5035–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Medina-Contreras O, Geem D, Laur O, Williams IR, Lira SA, Nusrat A, et al. CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice. J Clin Invest. 2011;121:4787–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lissner D, Schumann M, Batra A, Kredel LI, Kuhl AA, Erben U, et al. Monocyte and M1 macrophage-induced barrier defect contributes to chronic intestinal inflammation in IBD. Inflamm Bowel Dis. 2015;21:1297–305.

    PubMed  PubMed Central  Google Scholar 

  41. Kredel LI, Batra A, Stroh T, Kuhl AA, Zeitz M, Erben U, et al. Adipokines from local fat cells shape the macrophage compartment of the creeping fat in Crohn’s disease. Gut. 2013;62:852–62.

    Article  CAS  PubMed  Google Scholar 

  42. Salem M, Seidelin JB, Eickhardt S, Alhede M, Rogler G, Nielsen OH. Species-specific engagement of human nucleotide oligomerization domain 2 (NOD)2 and Toll-like receptor (TLR) signalling upon intracellular bacterial infection: role of Crohn’s associated NOD2 gene variants. Clin Exp Immunol. 2015;179:426–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Rogler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rogler, G. (2017). Immune Cells: Monocytes and Macrophages. In: Baumgart, D. (eds) Crohn's Disease and Ulcerative Colitis. Springer, Cham. https://doi.org/10.1007/978-3-319-33703-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33703-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33701-2

  • Online ISBN: 978-3-319-33703-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics