Skip to main content

Anti-angiogenics in Brain Metastases: Perspectives and Experiences

  • Reference work entry
  • First Online:
Tumor Angiogenesis

Abstract

Metastasis to the brain is an increasing complication of solid cancers, associated with high morbidity and mortality. Our understanding of key molecular and cellular determinants of early brain colonization and metastatic growth has significantly increased in the last decade, including crucial interactions with brain blood vessels. In lung adenocarcinoma, an early angiogenic switch appears mandatory for outgrowth beyond a micrometastatic state. This can explain preventive effects of anti-angiogenics against brain metastases formation in lung adenocarcinoma, which are suggested by mouse experiments and retrospective analysis of a clinical trial. Interestingly, there is no indication that those preventive effects of anti-angiogenics against the formation of macrometastases can be found outside the brain or in other tumor entities. In established brain macrometastases of various cancers, a growth pattern with strong angiogenic features can frequently be observed. Accordingly, an increasing amount of data speaks for a clinically meaningful activity of anti-angiogenics, particularly the anti-VEGF-A antibody bevacizumab, against brain macrometastases of patients. Moreover, the antiedema effects of this class of drugs, including their activity against radionecrosis, make anti-angiogenics useful agents in clinical practice with beneficial effects on neurological deficits and quality of life. This is even true for anti-angiogenics like bevacizumab given as single agents without combined chemotherapy. Taken together, there is accumulating evidence that anti-angiogenics might have a particularly meaningful role in the prevention and treatment of brain metastases. The lack of prospective randomized trials means that they have to be considered experimental therapies in this situation today. Thus, more robust clinical data are necessary to fully clarify the role of anti-angiogenics in brain metastases, a disease where better strategies for prevention and treatment are urgently needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 439.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Auperin A et al (1999) Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. Prophylactic Cranial Irradiation Overview Collaborative Group. N Engl J Med 341(7):476–484

    Article  CAS  PubMed  Google Scholar 

  • Baek KH et al (2009) Down’s syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1. Nature 459(7250):1126–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batchelor TT et al (2013) Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc Natl Acad Sci U S A 110(47):19059–19064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennouna J et al (2018) Bevacizumab in combination with platinum-based chemotherapy in patients with advanced non-squamous non-small cell lung cancer with or without brain metastases: a French cohort study (EOLE). Oncology 94(1):55–64

    Article  CAS  PubMed  Google Scholar 

  • Berghoff AS, Preusser M (2018) Anti-angiogenic therapies in brain metastases. Memo 11(1):14–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Berghoff AS et al (2014) Alleviation of brain edema and restoration of functional independence by bevacizumab in brain-metastatic breast cancer: a case report. Breast Care (Basel) 9(2):134–136

    Article  Google Scholar 

  • Berghoff AS et al (2015) Differential role of angiogenesis and tumour cell proliferation in brain metastases according to primary tumour type: analysis of 639 cases. Neuropathol Appl Neurobiol 41(2):e41–e55

    Article  CAS  PubMed  Google Scholar 

  • Besse B et al (2010) Bevacizumab safety in patients with central nervous system metastases. Clin Cancer Res 16(1):269–278

    Article  CAS  PubMed  Google Scholar 

  • Besse B et al (2015) Bevacizumab in patients with nonsquamous non-small cell lung cancer and asymptomatic, untreated brain metastases (BRAIN): a nonrandomized, phase II study. Clin Cancer Res 21(8):1896–1903

    Article  CAS  PubMed  Google Scholar 

  • Bhaskara A, Eng C (2008) Bevacizumab in the treatment of a patient with metastatic colorectal carcinoma with brain metastases. Clin Colorectal Cancer 7(1):65–68

    Article  CAS  PubMed  Google Scholar 

  • Boothe D et al (2013) Bevacizumab as a treatment for radiation necrosis of brain metastases post stereotactic radiosurgery. Neuro-Oncology 15(9):1257–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen BB et al (2016) A pilot study to determine the timing and effect of bevacizumab on vascular normalization of metastatic brain tumors in breast cancer. BMC Cancer 16:466

    Article  PubMed  PubMed Central  Google Scholar 

  • Chevreau C et al (2014) A phase II trial of sunitinib in patients with renal cell cancer and untreated brain metastases. Clin Genitourin Cancer 12(1):50–54

    Article  PubMed  Google Scholar 

  • Danciu OC et al (2011) Prolonged activity of bevacizumab in adenocarcinoma of the lung with multiple brain metastases. Med Oncol 29:2619–22

    Google Scholar 

  • Davis FG et al (2012) Toward determining the lifetime occurrence of metastatic brain tumors estimated from 2007 United States cancer incidence data. Neuro-Oncology 14(9):1171–1177

    Article  PubMed  PubMed Central  Google Scholar 

  • De Braganca KC et al (2010) Efficacy and safety of bevacizumab in active brain metastases from non-small cell lung cancer. J Neuro-Oncol 100(3):443–447

    Article  Google Scholar 

  • Delishaj D et al (2017) Bevacizumab for the treatment of radiation-induced cerebral necrosis: a systematic review of the literature. J Clin Med Res 9(4):273–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeSantis CE et al (2014) Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin 64(4):252–271

    Article  PubMed  Google Scholar 

  • Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20(21):4368–4380

    Article  CAS  PubMed  Google Scholar 

  • Felsberg J et al (2017) THE RANDOMIZED PHASE II ARTE TRIAL: BEVACIZUMAB PLUS HYPOFRACTIONATED RADIOTHERAPY VERSUS RADIOTHERAPY ALONE IN ELDERLY PATIENTS WITH NEWLY DIAGNOSED GLIOBLASTOMA. Neuro-Oncology 19(suppl_6):vi2

    PubMed Central  Google Scholar 

  • Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6(4):273–286

    Article  CAS  PubMed  Google Scholar 

  • Gianni L et al (2013) AVEREL: a randomized phase III trial evaluating bevacizumab in combination with docetaxel and trastuzumab as first-line therapy for HER2-positive locally recurrent/metastatic breast cancer. J Clin Oncol 31(14):1719–1725

    Article  CAS  PubMed  Google Scholar 

  • Goldberg SB et al (2016) Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol 17(7):976–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gore ME et al (2011) Sunitinib in metastatic renal cell carcinoma patients with brain metastases. Cancer 117(3):501–509

    Article  CAS  PubMed  Google Scholar 

  • Ilhan-Mutlu A et al (2016) Bevacizumab prevents brain metastases formation in lung adenocarcinoma. Mol Cancer Ther 15(4):702–710

    Article  CAS  PubMed  Google Scholar 

  • Jain RK et al (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8(8):610–622

    Article  CAS  PubMed  Google Scholar 

  • Kienast Y, Winkler F (2010) Therapy and prophylaxis of brain metastases. Expert Rev Anticancer Ther 10(11):1763–1777

    Article  PubMed  Google Scholar 

  • Kienast Y et al (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16(1):116–122

    Article  CAS  PubMed  Google Scholar 

  • Labidi SI et al (2009) Bevacizumab and paclitaxel for breast cancer patients with central nervous system metastases: a case series. Clin Breast Cancer 9(2):118–121

    Article  CAS  PubMed  Google Scholar 

  • Levin VA et al (2011) Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 79(5):1487–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin NU et al (2013) CNS metastases in breast cancer: old challenge, new frontiers. Clin Cancer Res 19(23):6404–6418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu YS et al (2015) Bevacizumab preconditioning followed by Etoposide and Cisplatin is highly effective in treating brain metastases of breast cancer progressing from whole-brain radiotherapy. Clin Cancer Res 21(8):1851–1858

    Article  CAS  PubMed  Google Scholar 

  • Margolin K et al (2012) Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol 13(5):459–465

    Article  CAS  PubMed  Google Scholar 

  • Mathews MS et al (2008) The effect of bevacizumab (Avastin) on neuroimaging of brain metastases. Surg Neurol 70(6):649–652

    Article  PubMed  Google Scholar 

  • Miles DW et al (2010) Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 28(20):3239–3247

    Article  CAS  PubMed  Google Scholar 

  • Osswald M et al (2016) Impact of blood-brain barrier integrity on tumor growth and therapy response in brain metastases. Clin Cancer Res 22(24):6078–6087

    Article  CAS  PubMed  Google Scholar 

  • Palmieri D et al (2014) Profound prevention of experimental brain metastases of breast cancer by temozolomide in an MGMT-dependent manner. Clin Cancer Res 20(10):2727–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preusser M et al (2012) Brain metastases: pathobiology and emerging targeted therapies. Acta Neuropathol 123(2):205–222

    Article  CAS  PubMed  Google Scholar 

  • Reck M et al (2009) Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol 27(8):1227–1234

    Article  CAS  PubMed  Google Scholar 

  • Reck M et al (2010) Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase III trial (AVAiL). Ann Oncol 21(9):1804–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds LE et al (2010) Tumour angiogenesis is reduced in the Tc1 mouse model of Down’s syndrome. Nature 465(7299):813–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth P, Wick W, Weller M (2010) Steroids in neurooncology: actions, indications, side-effects. Curr Opin Neurol 23(6):597–602

    Article  CAS  PubMed  Google Scholar 

  • Sandler A et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355(24):2542–2550

    Article  CAS  PubMed  Google Scholar 

  • Scholz A et al (2016) Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma. EMBO Mol Med 8(1):39–57

    Article  CAS  PubMed  Google Scholar 

  • Socinski MA et al (2009) Safety of bevacizumab in patients with non-small-cell lung cancer and brain metastases. J Clin Oncol 27(31):5255–5261

    Article  CAS  PubMed  Google Scholar 

  • Soffietti R et al (2017) Diagnosis and treatment of brain metastases from solid tumors: guidelines from the European Association of Neuro-Oncology (EANO). Neuro-Oncology 19(2):162–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steeg PS (2012) Perspective: the right trials. Nature 485(7400):S58–S59

    Article  CAS  PubMed  Google Scholar 

  • Steeg PS, Camphausen KA, Smith QR (2011) Brain metastases as preventive and therapeutic targets. Nat Rev Cancer 11(5):352–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanou D et al (2016) Bevacizumab, pemetrexed and carboplatin in first-line treatment of non-small cell lung cancer patients: focus on patients with brain metastases. Oncol Lett 12(6):4635–4642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su YL, Rau KM (2015) Adding bevacizumab to chemotherapy effectively control radioresistant brain metastases in ALK-positive lung adenocarcinoma. J Thorac Oncol 10(4):e21–e22

    Article  PubMed  Google Scholar 

  • Tawbi HA et al (2018) Combined Nivolumab and ipilimumab in melanoma metastatic to the brain. N Engl J Med 379(8):722–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valiente M et al (2018) The evolving landscape of brain metastasis. Trends Cancer 4(3):176–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Winkler F (2017) Hostile takeover: how tumours hijack pre-existing vascular environments to thrive. J Pathol 242(3):267–272

    Article  PubMed  Google Scholar 

  • Winkler F et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6(6):553–563

    CAS  PubMed  Google Scholar 

  • Winkler F, Osswald M, Wick W (2018) Anti-angiogenics: their role in the treatment of glioblastoma. Oncol Res Treat 41(4):181–186

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto D et al (2012) Bevacizumab in the treatment of five patients with breast cancer and brain metastases: Japan Breast Cancer Research Network-07 trial. Onco Targets Ther 5:185–189

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Rasmussen SA, Friedman JM (2002) Mortality associated with Down’s syndrome in the USA from 1983 to 1997: a population-based study. Lancet 359(9311):1019–1025

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Deutsche Krebshilfe (German Cancer Aid), Priority Program “Translational Oncology”, #70112507, “Preventive strategies against brain metastases.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Winkler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Winkler, F. (2019). Anti-angiogenics in Brain Metastases: Perspectives and Experiences. In: Marmé, D. (eds) Tumor Angiogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-33673-2_49

Download citation

Publish with us

Policies and ethics