Skip to main content

Oxidative Stress and Alzheimer’s Disease

  • Chapter
  • First Online:
Inflammation, Aging, and Oxidative Stress

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that causes dementia in the elderly. AD is the leading cause of senile dementia and although the pathogenesis of this disorder is not fully understood, various hypotheses have been developed based on experimental data accumulated since the initial description of this disease by Alois Alzheimer about 90 years ago. Most approaches to explaining the pathogenesis of AD focus on its two histopathological hallmarks: amyloid β protein (Aβ) -loaded senile plaques and neurofibrillary tangles, which consist of the filament protein tau. Growing evidence reveals that oxidative stress is an important factor contributing to the initiation and progression of AD. Oxidative stress, manifested by protein oxidation, lipid peroxidation, DNA oxidation, and 3-nitrotyrosine formation, among other indices, is observed in AD brain. However, the mechanisms that lead to the disruption of redox balance and the sources of free radicals remain elusive. The excessive reactive oxygen species may be generated from mechanisms such as mitochondria dysfunction and/or aberrant accumulation of transition metals, while the abnormal accumulation of Aβ and tau proteins appears to promote the redox imbalance. The resultant oxidative stress has been implicated in Aβ- or tau-induced neurotoxicity. In addition, evidence has suggested that oxidative stress may augment the production and aggregation of Aβ and facilitate the phosphorylation and polymerization of tau, thus forming a vicious cycle that promotes the initiation and progression of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sokoloff L. Energetics of functional activation in neural tissues. Neurochem Res. 1999;24:321–9.

    Article  CAS  PubMed  Google Scholar 

  2. Tholey G, Ledig M. Neuronal and astrocytic plasticity: metabolic aspects. Ann Med Intern (Paris). 1990;141 Suppl 1:13–8.

    Google Scholar 

  3. Pratico D. Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol Sci. 2008;29:609–15.

    Article  CAS  PubMed  Google Scholar 

  4. Nunomura A, Castellani RJ, Zhu X, Moreira PI, Perry G, Smith MA. Involvement of oxidative stress in Alzheimer disease. J Neuropathol Exp Neurol. 2006;65:631–41.

    Article  CAS  PubMed  Google Scholar 

  5. Pocernich C, Butterfield D. Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochim Biophys Acta. 2012;1822(5):625–30.

    Article  CAS  PubMed  Google Scholar 

  6. Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet. 1994;344:721–4.

    Article  CAS  PubMed  Google Scholar 

  7. Poulson HE, Prieme H, Loft S. Role of oxidative DNA damage in cancer initiation and promotion. Eur J Cancer Prev. 1998;7:9–16.

    Google Scholar 

  8. Markesbery WR. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med. 1997;23:134–47.

    Article  CAS  PubMed  Google Scholar 

  9. Liochev SI. The mechanism of “Fenton-like” reactions and their importance for biological systems. A biologist’s view. Met Ions Biol Syst. 1999;36(1999):1–39.

    CAS  PubMed  Google Scholar 

  10. Salganik RI. The benefits and hazards of antioxidants: controlling apoptosis and other protective mechanisms in cancer patients and the human population. J Am Coll Nutr. 2001;20(suppl):464S–72.

    Article  CAS  PubMed  Google Scholar 

  11. Yu BP. Cellular defences against damage from reactive oxygen species. Biol Rev. 1994;74:139–62.

    CAS  Google Scholar 

  12. Gilgun-Sherki Y, Melamed E, Offen D. Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology. 2001;40:959–75.

    Article  CAS  PubMed  Google Scholar 

  13. Halliwell B, Gutterer JM. Free radicals in biology and medicine. Oxford: Oxford University Press; 1999.

    Google Scholar 

  14. Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med. 2010;362:329–44.

    Article  CAS  PubMed  Google Scholar 

  15. Steiner H. Uncovering gamma-secretase. Curr Alzheimer Res. 2004;1:175–81.

    Article  CAS  PubMed  Google Scholar 

  16. Walsh DM, Selkoe DJ. Abeta oligomers-a decade of discovery. J Neurochem. 2007;101:1172–84.

    Article  CAS  PubMed  Google Scholar 

  17. Yankner BA, Lu T. Amyloid beta-protein toxicity and the pathogenesis of Alzheimer disease. J Biol Chem. 2009;284:4755–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Esler WP, Wolfe MS. A portrait of Alzheimer secretases—new features and familiar faces. Science. 2001;293:1449–54.

    Article  CAS  PubMed  Google Scholar 

  19. Roberson ED, Mucke L. 100 years and counting: prospects for defeating Alzheimer’s disease. Science. 2006;314:781–4.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Maccioni R, Maccioni RB, Munoz JP, Barbeito L. The molecular bases of Alzheimer’s disease and other neurodegenerative disorders. Arch Med Res. 2001;32:367–438.

    Article  CAS  PubMed  Google Scholar 

  21. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science. 1996;274:99–102.

    Article  CAS  PubMed  Google Scholar 

  22. Mattson MP. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev. 1997;77:1081–132.

    CAS  PubMed  Google Scholar 

  23. Behl C, Davis JB, Lesley R, Schubert D. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell. 1994;77:817–27.

    Article  CAS  PubMed  Google Scholar 

  24. Matsuoka Y, Picciano M, La Francois J, Duff K. Fibrillar beta-amyloid evokes oxidative damage in a transgenic mouse model of Alzheimer’s disease. Neuroscience. 2001;104:609–13.

    Article  CAS  PubMed  Google Scholar 

  25. Smith MA, Hirai K, Hsiao K, Pappolla MA, Harris PL, Siedlak SL, Tabaton M, Perry G. Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J Neurochem. 1998;70:2212–5.

    Article  CAS  PubMed  Google Scholar 

  26. Mohmmad Abdul H, Sultana R, Keller JN, St Clair DK, Markesbery WR, Butterfield DA. Mutations in amyloid precursor protein and presenilin-1 genes increase the basal oxidative stress in murine neuron al cells and lead to increased sensitivity to oxidative stress mediated by amyloid beta -peptide (1-42), HO and kainic acid: implications for Alzheimer’s disease. J Neurochem. 2006;96:1322–35.

    Article  PubMed  Google Scholar 

  27. Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH. Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet. 2006;15:1437–49.

    Article  CAS  PubMed  Google Scholar 

  28. Apelt J, Bigl M, Wunderlich P, Schliebs R. Aging-related increase in oxidative stress correlates with developmental pattern of beta-secretase activity and beta-amyloid plaque formation in transgenic Tg2576 mice with Alzheimer- like pathology. Int J Dev Neurosci. 2004;22:475–84.

    Article  CAS  PubMed  Google Scholar 

  29. Cole GM, Teter B, Frautschy SA. Neuroprotective effects of curcumin. Adv Exp Med Biol. 2007;595:197–212.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mandel SA, Amit T, Kalfon L, Reznichenko L, Youdim MB. Targeting multiple neurodegenerative diseases etiologies with multimodal -acting green tea catechins. J Nutr. 2008;138:1578S–83.

    CAS  PubMed  Google Scholar 

  31. Zhao Y, Zhao B. Natural antioxidants in prevention and management of Alzheimer’s disease. Front Biosci. 2012;4:794–808.

    Article  Google Scholar 

  32. Smith JV, Luo Y. Studies on mo lecular mechanisms of Ginkgo biloba extract. Appl Microbiol Biotechnol. 2004;64:465–72.

    Article  CAS  PubMed  Google Scholar 

  33. Goedert M, Spillantini MG. A century of Alzheimer’s disease. Science. 2006;314:777–81.

    Article  CAS  PubMed  Google Scholar 

  34. Iqbal K, Liu F, Gong CX, Alonso-Adel C, Grundke-Iqbal I. Mechanisms of tau -induced neurodegeneration. Acta Neuropathol. 2009;118:53–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Billingsley ML, Kincaid RL. Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J. 1997;323(Pt 3):577–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zheng WH, Bastianetto S, Mennicken F, Ma W, Kar S. Amyloid beta peptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septal cultures. Neuroscience. 2002;115:201–11.

    Article  CAS  PubMed  Google Scholar 

  37. Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science. 2001;293:1487–91.

    Article  CAS  PubMed  Google Scholar 

  38. Gotz J, Chen F, van Dorpe J, Nitsch RM. Formation of neurofibrillary tang les in P301l tau transgenic mice induced by Abeta 42 fibrils. Science. 2001;293:1491–5.

    Article  CAS  PubMed  Google Scholar 

  39. Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol. 2002;156:1051–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dias-Santagata D, Fulga TA, Duttaroy A, Feany MB. Oxidative stress mediates tau -induced neurodegeneration in Drosophila. J Clin Invest. 2007;117:236–45.

    Article  CAS  PubMed  Google Scholar 

  41. Cente M, Filipcik P, Pevalova M, Novak M. Expression of a truncated tau protein induces oxidative stress in a rodent model of tauopathy. Eur J Neurosci. 2006;24:1085–90.

    Article  PubMed  Google Scholar 

  42. Cente M, Filipcik P, Mandakova S, Zilka N, Krajciova G, Novak M. Expression of a truncated human tau protein induces aqueous -phase free radicals in a rat model of tauopathy: implications for targeted antioxidative therapy. J Alzheimers Dis. 2009;17:913–20.

    CAS  PubMed  Google Scholar 

  43. Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron. 2007;53:337–51.

    Article  CAS  PubMed  Google Scholar 

  44. David DC, Hauptmann S, Scherping I, Schuessel K, Keil U, Rizzu P, Ravid R, Drose S, Brandt U, Muller WE, Eckert A, Gotz J. Proteomic and functional analyses reveal a mitochondrial dysfunction in P301L tau transgenic mice. J Biol Chem. 2005;280:23802–14.

    Article  CAS  PubMed  Google Scholar 

  45. Dumont M, Stack C, Elipenahli C, Jainuddin S, Gerges M, Starkova NN, Yang L, Starkov AA, Beal F. Behavioral deficit, oxidative stress, and mitochondrial dysfunction precede tau pathology in P301S transgenic mice. FASEB J. 2011;25:4063–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Elipenahli C, Stack C, Jainuddin S, Gerges M, Yang L, Starkov A, Beal MF, Dumont M. Behavioral improvement after chronic administration of coenzyme Q10 in P301S transgenic mice. J Alzheimers Dis. 2011;28:173–82.

    Google Scholar 

  47. Eckert A, Schulz KL, Rhein V, Gotz J. Convergence of amyloid-beta and tau pathologies on mitochondria in vivo. Mol Neurobiol. 2010;41:107–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F, Ozmen L, Bluethmann H, Drose S, Brandt U, Savaskan E, Czech C, Gotz J, Eckert A. Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc Natl Acad Sci U S A. 2009;106:20057–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gamblin TC, King ME, Kuret J, Berry RW, Binder LI. Oxidative regulation of fatty acid- induced tau polymerization. Biochemistry. 2000;39:14203–10.

    Article  CAS  PubMed  Google Scholar 

  50. Melov S, Adlard PA, Morten K, Johnson F, Golden TR, Hinerfeld D, Schilling B, Mavros C, Masters CL, Volitakis I, Li QX, Laughton K, Hubbard A, Cherny RA, Gibson B, Bush AI. Mitochondrial oxidative stress causes hyperphosphorylation of tau. PLoS One. 2007;2, e536.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Murakami K, Murata N, Noda Y, Tahara S, Kaneko T, Kinoshita N, Hatsuta H, Murayama S, Barnham KJ, Irie K, Shirasawa T, Shimizu T. SOD1 (copper/zinc superoxide dismutase) deficiency drives amyloid beta protein oligomerization and memory loss in mouse model of Alzheimer disease. J Biol Chem. 2011;286:44557–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goedert M, Hasegawa M, Jakes R, Lawler S, Cuenda A, Cohen P. Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases. FEBS Lett. 1997;409:57–62.

    Article  CAS  PubMed  Google Scholar 

  53. Zhu X, Rottkamp CA, Boux H, Takeda A, Perry G, Smith MA. Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle- related events in Alzheimer disease. J Neuropathol Exp Neurol. 2000;59:880–8.

    Article  CAS  PubMed  Google Scholar 

  54. Nunomura A, et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol. 2001;60:759–67.

    Article  CAS  PubMed  Google Scholar 

  55. Pratico D, Uryu K, Leight S, Trojanoswki JQ, Lee VM. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci. 2001;21:4183–7.

    CAS  PubMed  Google Scholar 

  56. Reddy PH, et al. Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer’s disease. Hum Mol Genet. 2004;13:1225–40.

    Article  CAS  PubMed  Google Scholar 

  57. Ohyagi Y, et al. Selective increase in cellular Aβ42 is related to apoptosis but not necrosis. Neuroreport. 2000;11:167–71.

    Article  CAS  PubMed  Google Scholar 

  58. Li F, et al. Increased plaque burden in brains of APP mutant MnSOD heterozygous knockout mice. J Neurochem. 2004;89:1308–12.

    Article  CAS  PubMed  Google Scholar 

  59. Velliquette RA, O’Connor T, Vassar R. Energy inhibition elevates β-secretase levels and activity and is potentially amyloidogenic in APP transgenic mice: possible early events in Alzheimer’s disease pathogenesis. J Neurosci. 2005;25:10874–83.

    Article  CAS  PubMed  Google Scholar 

  60. Lovell MA, Xiong S, Xie C, Davies P, Markesbery WR. Induction of hyperphosphorylated tau in primary rat cortical neuron cultures mediated by oxidative stress and glycogen synthase kinase-3. J Alzheimers Dis. 2004;6:659–71.

    CAS  PubMed  Google Scholar 

  61. Tamagno E, et al. β-Site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J Neurochem. 2005;92:628–36.

    Article  CAS  PubMed  Google Scholar 

  62. Swerdlow RH, et al. Cybrids in Alzheimer’s disease: a cellular model of the disease? Neurology. 1997;49:918–25.

    Article  CAS  PubMed  Google Scholar 

  63. Elson JL, et al. Does the mitochondrial genome play a role in the etiology of Alzheimer’s disease? Hum Genet. 2006;119:241–54.

    Article  CAS  PubMed  Google Scholar 

  64. Lin MT, Simon DK, Ahn CH, Kim LM, Beal MF. High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer’s disease brain. Hum Mol Genet. 2002;11:133–45.

    Article  CAS  PubMed  Google Scholar 

  65. Coskun PE, Beal MF, Wallace DC. Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci U S A. 2004;101:10726–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG. Mitochondrial targeting and a novel trans-membrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol. 2003;161:41–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lustbader JW, et al. ABAD directly links Aβto mitochondrial toxicity in Alzheimer’s disease. Science. 2004;304:448–52.

    Article  CAS  PubMed  Google Scholar 

  68. Crouch PJ, et al. Copper-dependent inhibition of human cytochrome coxidase by a dimeric conformer of amyloid-β1-42. J Neurosci. 2005;25:672–9.

    Article  CAS  PubMed  Google Scholar 

  69. Casley CS, Canevari L, Land JM, Clark JB, Sharpe MA. β-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J Neurochem. 2002;80:91–100.

    Article  CAS  PubMed  Google Scholar 

  70. Parker WD, Filley CM, Parks JK. Cytochrome oxidase deficiency in Alzheimer’s disease. Neurology. 1990;40:1302–3.

    Article  PubMed  Google Scholar 

  71. Gibson GE, et al. Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer’s disease. Arch Neurol. 1988;45:836–40.

    Article  CAS  PubMed  Google Scholar 

  72. Hansson CA, et al. Nicastrin, presenilin, APH-1, and PEN-2 form active γ-secretase complexes in mitochondria. J Biol Chem. 2004;279:51654–60.

    Article  CAS  PubMed  Google Scholar 

  73. Nunomura A, et al. Neuronal RNA oxidation in Alzheimer’s disease and Down’s syndrome. Ann N Y Acad Sci. 1999;893:362–4.

    Article  CAS  PubMed  Google Scholar 

  74. Sayre LM, Perry G, Smith MA. Redox metals and neurodegenerative disease. Curr Opin Chem Biol. 1999;3(2):220–5.

    Article  CAS  PubMed  Google Scholar 

  75. Smith MA, et al. Increased iron and free radical generation in preclinical Alzheimer’s disease and mild cognitive impairment. J Alzheimers Dis. 2010;19(1):363–72.

    PubMed  PubMed Central  Google Scholar 

  76. Liu G, et al. Metal chelators coupled with nanoparticles as potential therapeutic agents for Alzheimer’s disease. J Nanoneurosci. 2009;1(1):42–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Moreira PI, et al. Alzheimer’s disease and the role of free radicals in the pathogenesis of the disease. CNS Neurol Disord Drug Targets. 2008;7(1):3–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support provided by the Semmes Foundation and by a grant from the National Institute on Minority Health and Health Disparities (G12MD007591) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Perry Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Singh, S.K., Castellani, R., Perry, G. (2016). Oxidative Stress and Alzheimer’s Disease. In: Bondy, S., Campbell, A. (eds) Inflammation, Aging, and Oxidative Stress. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-33486-8_10

Download citation

Publish with us

Policies and ethics