Skip to main content

Greedy Mean Squared Residue for Texture Images Retrieval

  • Conference paper
  • First Online:
Modelling and Implementation of Complex Systems

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 1))

  • 636 Accesses

Abstract

In this paper, we propose a new algorithm for texture retrieval, using clustering strategy. Indeed, it is largely noticed that in existing CBIR systems and methods, the collection of the images similar to the query is realized on the basis of comparison of the database images to the query solely. Hence, the results might not be globally homogeneous. In this paper, the collection of the images most similar to the query is realized considering the global homogeneity of the whole cluster (result). Knowing that this is of an exponential order problem, we use a greedy solution consisting in growing the cluster corresponding to a query, one image at a time, based on the Mean Squared residue measure of Cheng and Church (Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, 2000) [1], originally proposed for the biclustering of gene expression data. At each stage, the new added image to the cluster will be that that preserves most the homogeneity of the current cluster. The texture descriptor used in this work is the uniform-LBP. Experimentations were conducted on two texture image databases, Outext and Brodatz. The proposed algorithm shows an interesting performance compared to the uniform-LBP combined to Euclidean metric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.outex.oulu.fi/db/classification/tmp/Outex_TC_00000.tar.gz.

  2. 2.

    http://multibandtexture.recherche.usherbrooke.ca/images/Original_Brodatz.zip.

References

  1. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology (2000)

    Google Scholar 

  2. Liu, Y., Zhang, D., Lu, G., Ma, W.-Y.: A survey of content-based image retrieval with high-level semantics. Pattern Recogn. 40, 262–282 (2007)

    Article  MATH  Google Scholar 

  3. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textures features for image classification. IEEE Trans. Syst. Man Cybern. SMC-3, 610–621 (1973)

    Google Scholar 

  4. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002)

    Article  MATH  Google Scholar 

  5. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29, 51–59 (1996)

    Article  Google Scholar 

  6. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28, 2037–2041 (2006)

    Article  MATH  Google Scholar 

  7. Yang, Z., Ai, H.: Demographic classification with local binary patterns. In: Lee, S.-W., Li, S. (eds.) Advances in Biometrics, vol. 4642, pp. 464–473. Springer, Berlin (2007)

    Google Scholar 

  8. Tang, Z., Su, Y., Er, M.J., Qi, F., Zhang, L., Zhou, J.: A local binary pattern based texture descriptors for classification of tea leaves. Neurocomputing 168, 1011–1023 (2015)

    Article  Google Scholar 

  9. Jin, H., Liu, Q., Lu, H., Tong, X.: Face detection using improved LBP under Bayesian framework. In: Proceedings of the Third International Conference on Image and Graphics (ICIG’04) 2004

    Google Scholar 

  10. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. Anal. Model. Faces Gestures 4778, 168–182 (2007)

    Article  Google Scholar 

  11. Liao, S., Law, M.W.K., Chung, A.C.S.: Dominant local binary patterns for texture classification. IEEE Trans. Image Process. 18, 1107–1118 (2009)

    Article  MathSciNet  Google Scholar 

  12. Takala, V., Ahonen, T., Pietikäinen, M.: Block-based methods for image retrieval using local binary patterns. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) Image Analysis, vol. 3540, pp. 882–891. Springer, Berlin (2005)

    Google Scholar 

  13. Bougueroua, S., Boucheham, B.: Ellipse based local binary pattern for color image retrieval. In: ISKO-Maghreb: Concepts and Tools for knowledge Management (ISKO-Maghreb), 2014 4th International Symposium, pp. 1–8. Algiers, Algeria (2014)

    Google Scholar 

  14. Bougueroua, S., Boucheham, B.: GLIBP: gradual locality integration of binary patterns for scene images retrieval. Accepted for publication in the Journal of Information Processing Systems (JIPS), ISSN: 1976-913x(print), ISSN: 2092-805x(online), the official international journal of the Korea Information Processing Society

    Google Scholar 

  15. Huang, Z.-C., Chan, P.P.K., Ng, W.W.Y., Yeung, D.S.: Content-based image retrieval using color moment and Gabor texture feature. In: Ninth International Conference on Machine Learning and Cybernetics (ICMLC), 2010. Qingdao (2010)

    Google Scholar 

  16. Jasmine, K.P., Kumar, P.R.: Integration of HSV color histogram and LMEBP joint histogram for multimedia image retrieval. In: Intelligent Computing, Networking, And Informatics, vol. 243, pp. 753–762. Springer, India (2014)

    Google Scholar 

  17. Palm, C.: Color texture classification by integrative co-occurrence matrices. Pattern Recogn. 37, 965–976 (2004)

    Article  Google Scholar 

  18. Zhou, J., Xu, T., Gao, W.: Content based image retrieval using local directional pattern and color histogram. In: Optimization and Control Techniques and Applications, vol. 86, pp. 197–211. Springer, Berlin (2014)

    Google Scholar 

  19. Wang, X.-Y., Zhang, B.-B., Yang, H.-Y.: Content-based image retrieval by integrating color and texture features. Multimedia Tools Appl. 68, 545–569 (2014)

    Article  Google Scholar 

  20. Huang, P.W., Dai, S.K.: Image retrieval by texture similarity. Pattern Recogn. 36, 665–679 (2003)

    Article  Google Scholar 

  21. Tiecheng, S., Hongliang, L., Bing, Z., Gabbouj, M.: Texture classification using joint statistical representation in space-frequency domain with local quantized patterns. In: 2014 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 886–889 (2014)

    Google Scholar 

  22. Ma, W.Y., Manjunath, B.S.: Texture features and learning similarity. In: 1996 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1996. Proceedings CVPR ‘96, pp. 425–430 (1996)

    Google Scholar 

  23. Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vision 7, 11–32 (1991)

    Article  Google Scholar 

  24. Rubner, Y., Tomasi, C., Guibas, L.: The Earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vision 40, 99–121. 2000/11/01 2000

    Google Scholar 

  25. Wei-Ta, C., Wei-Chuan, L., Ming-Syan, C.: adaptive color feature extraction based on image color distributions. IEEE Trans. Image Process. 19, 2005–2016 (2010)

    Article  MathSciNet  Google Scholar 

  26. Zhang, Q., Canosa, R.L.: A comparison of histogram distance metrics for content-based image retrieval, pp. 90270O–90270O-9 (2014)

    Google Scholar 

  27. Patil, S., Talbar, S.: Content based image retrieval using various distance metrics. In: Kannan, R., Andres, F. (eds.) Data Engineering and Management, vol. 6411, pp. 154–191. Springer, Berlin (2012)

    Google Scholar 

  28. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans. Comput. Biol. Bioinform. 1, 24–45 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah Bougueroua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bougueroua, S., Boucheham, B. (2016). Greedy Mean Squared Residue for Texture Images Retrieval. In: Chikhi, S., Amine, A., Chaoui, A., Kholladi, M., Saidouni, D. (eds) Modelling and Implementation of Complex Systems. Lecture Notes in Networks and Systems, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-33410-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33410-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33409-7

  • Online ISBN: 978-3-319-33410-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics