Skip to main content

Stochastic Analysis of a Fractal Grid Wake

  • Chapter
  • First Online:
Fractal Flow Design: How to Design Bespoke Turbulence and Why

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 568))

Abstract

We analyze a turbulent flow field generated by a fractal grid, with respect to spatial scale and different downstream positions. 2- and N-point statistics are used for the analysis. 2-point statistics are done by a spectrogram, which shows the spectral energy density in scale r and in distance to the grid x. The loglog-derivative in scale of the spectrogram is calculated and illustrates different scaling regions of the energy cascade. A complete characterization of the turbulent cascade is done by N-point statistic in terms of its stochastic process evolving in scale. This analysis is done in scale r at three characteristic downstream positions. The results of 2- and N-point statistic are interpreted and compared with each other, which provide a deeper understanding of the fractal grid wake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Calculation of energy spectral density is done by the fft-function of Matlab 2012.

  2. 2.

    L is calculated by integrating the autocorrelation function R(r), cf. Batchelor (1953). Partly autocorrelation functions do not monotonous decrease, until first zero crossing. In such a case, the lower part of autocorrelation function gets extrapolated by exponential function, \(f=a\cdot e^{-b\cdot r}\). f is fitted on R(r), the fit range is between the inflection point \(\partial _{rr}R(r)=0\), (e.g. \(R(r)\approx 0.7\)) and the point where the slope for the first time vanish \(\partial _{r}R(r)=0\), (e.g., \(R(r)\approx 0.1\)). Typically, such a procedure leads to smaller integral length scale compared to the standard procedure of Batchelor (1953).

  3. 3.

    The Taylor length \(\lambda \) is estimated by the procedure proposed by Aronson and Löfdahl (1993).

  4. 4.

    A single realization \(u(\cdot )\) is also named as a single path or trajectory of an increment, which means that the trajectory \(u=(U(x+r)-U(x))/\sigma _\infty \) is considered, where r changes from the upper border of the inertial range (\({\sim } L\)) to the lower border ( \({\sim } \lambda \)), whereas x is fixed.

References

  • Aronson, D., & Löfdahl, L. (1993). The plane wake of a cylinder: measurements and inferences on turbulence modeling. Physics of Fluids A, 5, 1433–1437. doi:10.1063/1.858579.

    Article  Google Scholar 

  • Batchelor, G. K. (1953). The theory of homogeneous turbulence. Cambridge: Cambridge science classic.

    MATH  Google Scholar 

  • Camussi, R., Ciliberto, S., & Baudet, C. (1997). Experimental study of the evolution of a velocity perturbation in fully developed turbulence. Phys. Rev. E, 56, 6181–6184. doi:10.1103/PhysRevE.56.6181.

    Article  Google Scholar 

  • Feller, W.(1968). An Introduction to Probability Theory and Its Applications, volume 1. New York: Wiley. ISBN 0471257087.

    Google Scholar 

  • Friedrich, R., & Peinke, J. (1997). Description of a turbulent cascade by a fokker-planck equation. Phys. Rev. Lett., 78, 863.

    Article  Google Scholar 

  • Hurst, D. & Vassilicos J. C. (2007). Scalings and decay of fractal-generated turbulence. Physics of Fluids, 19, 035103.

    Google Scholar 

  • Kleinhans, D., Friedrich, R., Nawroth, A. P., & Peinke, J. (2005). An iterative procedure for the estimation of drift and diffusion coefficients of langevin processes. Phys. Letters A, 346, 42–46.

    Article  MathSciNet  MATH  Google Scholar 

  • Kolmogorov, A. N. (1941). Dissipation of energy in locally isotropic turbulence. Dokl. Akad. SSSR, 32, 16–18.

    MathSciNet  MATH  Google Scholar 

  • Kolmogorov, A . N. (1962). A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high reynolds number. Journal of Fluid Mechanics, 13, 82–85, 5. ISSN1469-7645. doi:10.1017/S0022112062000518.

    Google Scholar 

  • Kraichnan, R. H., & Spiegel, E. A. (1962). Model for energy transfer in isotropic turbulence. Physics of Fluids 1958-1988, 5(5), 583–588. doi:10.1063/1.1706660.

    Google Scholar 

  • Laizet, S., & Vassilicos, J. C. (2012). Fractal space-scale unfolding mechanism for energy-efficient turbulent mixing. Physical Review E, 86(4), 046302.

    Article  Google Scholar 

  • Lück, St, Renner, Ch., Peinke, J., & Friedrich, R. (2006). The markov-einstein coherence length - a new meaning for the taylor length in turbulence. Physics Letters A, 359(5), 335–338. doi:10.1016/j.physleta.2006.06.053.

    Article  MATH  Google Scholar 

  • Mazellier, N., & Vassilicos, J. C. (2012). Turbulence without richardson-kolmogorov cascade. In M.Oberlack, J. Peinke, A. Talamelli, L. Castillo & M.Hlling (Eds.), Progress in Turbulence and Wind Energy IV (pp. 17–20). Berlin: Springer. doi:10.1007/978-3-642-28968-2-4.

  • Mydlarski, L., & Warhaft, Z. (1996). On the onset of high-reynolds-number grid-generated wind tunnel turbulence. Journal of Fluid Mechanics, 320, 331–368, 8. doi:10.1017/S0022112096007562.

    Google Scholar 

  • Nawroth, A. P., Peinke, J., Kleinhans, D., & Friedrich, R. (2007). Improved estimation of fokker-planck equations through optimisation. Phys. Rev. E., 76(056102).

    Google Scholar 

  • Nickelsen, Daniel, & Engel, Andreas. (2013). Probing small-scale intermittency with a fluctuation theorem. Physical Review Letters, 110, 214501. doi:10.1103/PhysRevLett.110.214501.

    Article  Google Scholar 

  • Pope, S. B. (2000). Turbulent Flows. Cambridge: Cambridge University Press. ISBN 9780521598866.

    Google Scholar 

  • Reinke, N., Fuchs, A., Medjroubi, W., Lind, P. G., Wächter, M., Peinke, J. (2015, February). The Langevin approach: A simple stochastic method for complex phenomena. ArXiv e-prints.

    Google Scholar 

  • Reinke, N., Nickelsen, D., Engel, A., & Peinke, J. (2015). Application of an integral fluctuation theorem to turbulent flows. Proceeding of the iTi, 2014.

    Google Scholar 

  • Renner, C., Peinke, J., & Friedrich, R. (2001). Experimental indications for markov properties of small-scale turbulence. J. Fluid Mech., 433, 383–409.

    Article  MATH  Google Scholar 

  • Renner, Ch., Peinke, J., Friedrich, R., Chanal, O., & Chabaud, B. (2002). Universality of small scale turbulence. Phys. Rev. Lett., 89, 124502. doi:10.1103/PhysRevLett.89.124502.

    Article  Google Scholar 

  • Risken, H. (1984). The Fokker-Planck Equation. Heidelberg: Springer.

    Book  MATH  Google Scholar 

  • Seifert, U. (2005). Entropy Production along a Stochastic Trajectory and an Integral Fluctuation Theorem. Physical Review Letters, 95(4), 040602. doi:10.1103/PhysRevLett. 95.040602.

    Article  Google Scholar 

  • Stresing, R., & Peinke, J. (2010). Towards a stochastic multi-point description of turbulence. New Journal of Physics, 12(10), 103046.

    Article  Google Scholar 

  • Stresing, R., Peinke, J., Seoud, R. E., & Vassilicos, J. C. (2010). Defining a new class of turbulent flows. Phys. Rev. Lett., 104, 194501. doi:10.1103/PhysRevLett.104.194501.

    Article  Google Scholar 

  • Stresing, R., Kleinhans, D., Friedrich, R., & Peinke, J. (2012). Publisher’s note: Different methods to estimate the einstein-markov coherence length in turbulence [phys. rev. e 83, 046319 (2011)]. Phys. Rev. E, 85, 029907. doi:10.1103/PhysRevE.85.029907.

    Article  Google Scholar 

  • Tutkun, M., & Mydlarski, L. (2004). Markovian properties of passive scalar increments in grid-generated turbulence. New Journal of Physics, 6(1), 49.

    Article  Google Scholar 

  • Weitemeyer, S., Reinke, N., Peinke, J., & Hölling, M. (2013). Multi-scale generation of turbulence with fractal grids and an active grid. Fluid Dynamics Research, 45(6), 061407.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Reinke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Reinke, N., Fuchs, A., Hölling, M., Peinke, J. (2016). Stochastic Analysis of a Fractal Grid Wake. In: Sakai, Y., Vassilicos, C. (eds) Fractal Flow Design: How to Design Bespoke Turbulence and Why. CISM International Centre for Mechanical Sciences, vol 568. Springer, Cham. https://doi.org/10.1007/978-3-319-33310-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33310-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33309-0

  • Online ISBN: 978-3-319-33310-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics