Skip to main content

Pluripotent Stem Cells for Modeling Motor Neuron Diseases

  • Chapter
  • First Online:
Recent Advances in Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 826 Accesses

Abstract

Motoneuron disorders (MNDs) are a group of degenerative diseases characterized by muscular weakness and muscle atrophy that result most often in the death of patients. Today, there is no treatment despite decades of clinical trials. One reason of failures of these trials may be the anatomic and physiologic differences that exist between humans and rodent models of MNDs. With the recent discovery of the human induced pluripotent stem cell (iPSC) technology, new hopes arise to generate human cellular models for MNDs. In this chapter, I will focus on the two most common infantile and adult MNDs, respectively: spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). I will describe iPSC models generated from patients with various forms of each disorder and the specific defects observed in iPS-derived motoneurons in order to validate models and to identify new phenotypes that could be targets of future therapies for SMA and ALS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faravelli I, et al. Motor neuron derivation from human embryonic and induced pluripotent stem cells: experimental approaches and clinical perspectives. Stem Cell Res Ther. 2014;5(4):87.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Winner B, et al. Human-induced pluripotent stem cells pave the road for a better understanding of motor neuron disease. Hum Mol Genet. 2014;23(R1):R27–34.

    Article  CAS  PubMed  Google Scholar 

  3. Boillee S, Vande Velde C, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron. 2006;52(1):39–59.

    Article  CAS  PubMed  Google Scholar 

  4. Haidet-Phillips AM, et al. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol. 2011;29(9):824–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McGivern JV, et al. Spinal muscular atrophy astrocytes exhibit abnormal calcium regulation and reduced growth factor production. Glia. 2013;61(9):1418–28.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Almeida S, et al. Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons. Acta Neuropathol. 2013;126(3):385–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ogawa S, et al. Induction of oligodendrocyte differentiation from adult human fibroblast-derived induced pluripotent stem cells. In Vitro Cell Dev Biol Anim. 2011;47(7):464–9.

    Article  CAS  PubMed  Google Scholar 

  8. Serio A, et al. Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy. Proc Natl Acad Sci U S A. 2013;110(12):4697–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang S, et al. Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell. 2013;12(2):252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chipman PH, Toma JS, Rafuse VF. Generation of motor neurons from pluripotent stem cells. Prog Brain Res. 2012;201:313–31.

    Article  PubMed  Google Scholar 

  11. Davis-Dusenbery BN, et al. How to make spinal motor neurons. Development. 2014;141(3):491–501.

    Article  CAS  PubMed  Google Scholar 

  12. Maury Y, et al. Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nat Biotechnol. 2015;33(1):89–96.

    Article  CAS  PubMed  Google Scholar 

  13. Burkhardt MF, et al. A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol Cell Neurosci. 2013;56:355–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu BY, Zhang SC. Differentiation of spinal motor neurons from pluripotent human stem cells. Nat Protoc. 2009;4(9):1295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lopez-Gonzalez R, Velasco I. Therapeutic potential of motor neurons differentiated from embryonic stem cells and induced pluripotent stem cells. Arch Med Res. 2012;43(1):1–10.

    Article  PubMed  Google Scholar 

  16. Hu BY, et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A. 2010;107(9):4335–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jha BS, Rao M, Malik N. Motor neuron differentiation from pluripotent stem cells and other intermediate proliferative precursors that can be discriminated by lineage specific reporters. Stem Cell Rev. 2015;11(1):194–204.

    Article  CAS  PubMed  Google Scholar 

  18. Corti S, et al. Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci Transl Med. 2012;4(165):165ra162.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Toli D, et al. Modeling amyotrophic lateral sclerosis in pure human iPSc-derived motor neurons isolated by a novel FACS double selection technique. Neurobiol Dis. 2015;82:269–80.

    Article  CAS  PubMed  Google Scholar 

  20. Amoroso MW, et al. Accelerated high-yield generation of limb-innervating motor neurons from human stem cells. J Neurosci. 2013;33(2):574–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen H, et al. Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons. Cell Stem Cell. 2014;14(6):796–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qu Q, et al. High-efficiency motor neuron differentiation from human pluripotent stem cells and the function of Islet-1. Nat Commun. 2014;5:3449.

    PubMed  Google Scholar 

  23. Du ZW, et al. Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells. Nat Commun. 2015;6:6626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chambers SM, et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27(3):275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim DS, et al. Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity. Stem Cell Rev. 2010;6(2):270–81.

    Article  CAS  PubMed  Google Scholar 

  26. Kanning KC, Kaplan A, Henderson CE. Motor neuron diversity in development and disease. Annu Rev Neurosci. 2010;33:409–40.

    Article  CAS  PubMed  Google Scholar 

  27. Adams KL, et al. Foxp1-mediated programming of limb-innervating motor neurons from mouse and human embryonic stem cells. Nat Commun. 2015;6:6778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Patani R, et al. Retinoid-independent motor neurogenesis from human embryonic stem cells reveals a medial columnar ground state. Nat Commun. 2011;2:214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Farrar MA, Kiernan MC. The genetics of spinal muscular atrophy: progress and challenges. Neurotherapeutics. 2015;12(2):290–302.

    Article  CAS  PubMed  Google Scholar 

  30. Kong L, et al. Impaired synaptic vesicle release and immaturity of neuromuscular junctions in spinal muscular atrophy mice. J Neurosci. 2009;29(3):842–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thomson SR, et al. Morphological characteristics of motor neurons do not determine their relative susceptibility to degeneration in a mouse model of severe spinal muscular atrophy. PLoS One. 2012;7(12):e52605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Boza-Moran MG, et al. Decay in survival motor neuron and plastin 3 levels during differentiation of iPSC-derived human motor neurons. Sci Rep. 2015;5:11696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ebert AD, et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 2009;457(7227):277–80.

    Article  CAS  PubMed  Google Scholar 

  34. Liu H, et al. Spinal muscular atrophy patient-derived motor neurons exhibit hyperexcitability. Sci Rep. 2015;5:12189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ng SY, et al. Genome-wide RNA-seq of human motor neurons implicates selective ER stress activation in spinal muscular atrophy. Cell Stem Cell. 2015;17(5):569–84.

    Article  CAS  PubMed  Google Scholar 

  36. Sareen D, et al. Inhibition of apoptosis blocks human motor neuron cell death in a stem cell model of spinal muscular atrophy. PLoS One. 2012;7(6):e39113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoshida M, et al. Modeling the early phenotype at the neuromuscular junction of spinal muscular atrophy using patient-derived iPSCs. Stem Cell Rep. 2015;4(4):561–8.

    Article  CAS  Google Scholar 

  38. Swinnen B, Robberecht W. The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol. 2014;10(11):661–70.

    Article  PubMed  Google Scholar 

  39. Millecamps S, et al. SOD1, ANG, VAPB, TARDBP, and FUS mutations in familial amyotrophic lateral sclerosis: genotype-phenotype correlations. J Med Genet. 2010;47(8):554–60.

    Article  CAS  PubMed  Google Scholar 

  40. Robberecht W, Philips T. The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci. 2013;14(4):248–64.

    Article  CAS  PubMed  Google Scholar 

  41. Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med. 1994;330(9):585–91.

    Article  CAS  PubMed  Google Scholar 

  42. Lacomblez L, et al. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet. 1996;347(9013):1425–31.

    Article  CAS  PubMed  Google Scholar 

  43. Rosen DR, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362(6415):59–62.

    Article  CAS  PubMed  Google Scholar 

  44. Gitcho MA, et al. TDP-43 A315T mutation in familial motor neuron disease. Ann Neurol. 2008;63(4):535–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kabashi E, et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet. 2008;40(5):572–4.

    Article  CAS  PubMed  Google Scholar 

  46. Kuhnlein P, et al. Two German kindreds with familial amyotrophic lateral sclerosis due to TARDBP mutations. Arch Neurol. 2008;65(9):1185–9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rutherford NJ, et al. Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet. 2008;4(9):e1000193.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sreedharan J, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science. 2008;319(5870):1668–72.

    Article  CAS  PubMed  Google Scholar 

  49. Van Deerlin VM, et al. TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol. 2008;7(5):409–16.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kwiatkowski Jr TJ, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323(5918):1205–8.

    Article  CAS  PubMed  Google Scholar 

  51. Vance C, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009;323(5918):1208–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. DeJesus-Hernandez M, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Renton AE, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72(2):257–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Philips T, Rothstein JD. Rodent models of amyotrophic lateral sclerosis. Curr Protoc Pharmacol 2015;69:5.67.1–21.

    Google Scholar 

  55. Valetdinova KR, Medvedev SP, Zakian SM. Model systems of motor neuron diseases as a platform for studying pathogenic mechanisms and searching for therapeutic agents. Acta Naturae. 2015;7(1):19–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Mitsumoto H, Brooks BR, Silani V. Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? Lancet Neurol. 2014;13(11):1127–38.

    Article  PubMed  Google Scholar 

  57. Donnelly CJ, et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron. 2013;80(2):415–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Haeusler AR, et al. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature. 2014;507(7491):195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sareen D, et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med. 2013;5(208):208ra149.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chestkov IV, et al. Patient-specific induced pluripotent stem cells for SOD1-associated amyotrophic lateral sclerosis pathogenesis studies. Acta Naturae. 2014;6(1):54–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Dimos JT, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 2008;321(5893):1218–21.

    Article  CAS  PubMed  Google Scholar 

  62. Alami NH, et al. Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron. 2014;81(3):536–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bilican B, et al. Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Proc Natl Acad Sci U S A. 2012;109(15):5803–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Egawa N, et al. Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med. 2012;4(145):145.

    Article  Google Scholar 

  65. Nishimura AL, et al. Allele-specific knockdown of ALS-associated mutant TDP-43 in neural stem cells derived from induced pluripotent stem cells. PLoS One. 2014;9(3):e91269.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Japtok J, et al. Stepwise acquirement of hallmark neuropathology in FUS-ALS iPSC models depends on mutation type and neuronal aging. Neurobiol Dis. 2015;82:420–9.

    Article  CAS  PubMed  Google Scholar 

  67. Lenzi J, et al. ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons. Dis Model Mech. 2015;8(7):755–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu X, et al. The fused in sarcoma protein forms cytoplasmic aggregates in motor neurons derived from integration-free induced pluripotent stem cells generated from a patient with familial amyotrophic lateral sclerosis carrying the FUS-P525L mutation. Neurogenetics. 2015;16(3):223–31.

    Article  CAS  PubMed  Google Scholar 

  69. Mitne-Neto M, et al. Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Hum Mol Genet. 2011;20(18):3642–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Alves CJ, et al. Gene expression profiling for human iPS-derived motor neurons from sporadic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration. Front Cell Neurosci. 2015;9:289.

    PubMed  PubMed Central  Google Scholar 

  71. Kiskinis E, et al. Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell. 2014;14(6):781–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Devlin AC, et al. Human iPSC-derived motoneurons harbouring TARDBP or C9ORF72 ALS mutations are dysfunctional despite maintaining viability. Nat Commun. 2015;6:5999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wainger BJ, et al. Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep. 2014;7(1):1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang YM, et al. A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell. 2013;12(6):713–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Naryshkin NA, et al. Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science. 2014;345(6197):688–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Bohl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bohl, D. (2016). Pluripotent Stem Cells for Modeling Motor Neuron Diseases. In: Abdelalim, E. (eds) Recent Advances in Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-33270-3_5

Download citation

Publish with us

Policies and ethics