Skip to main content

NVRAM-Assisted Optimization Techniques for Flash Memory Management in Embedded Sensor Nodes

  • Chapter
  • First Online:
Smart Sensors and Systems
  • 3091 Accesses

Abstract

Embedded sensor nodes are sensitize to battery lifetime and evidences show that DRAM-based main memory subsystem is the major contributor of the energy consumption of embedded sensor nodes. Due to the high density, byte-addressability, and low standby power consumption, non-volatile random access memories (NVRAMs), such as PRAM and STT-RAM, become promising main memory alternatives in embedded sensor nodes. On the other hand, NAND flash memory is widely adopted for storing collected data in embedded sensor nodes. However, both NVRAM and NAND flash memory have limited lifetime, how to optimize the management of NAND flash memory in NVRAM-based embedded sensor nodes while considering the endurance issue becomes quite important. In this chapter, we introduce a write-actively-aware NAND flash memory management scheme to effectively manage NAND flash memory while reducing the write activities to NVRAM-based main memory in embedded sensor nodes. The basic idea is to preserve each bit in flash mapping table, which is stored in NVRAM, from being inverted frequently during the mapping table update process. To achieve this, a two-level mapping mechanism is employed while considering the access behavior of IO requests, and a customized wear-leveling scheme is developed to evenly distribute the writes across the whole mapping table. Evaluation results show that the proposed technique can reduce the write activities significantly and achieve an even distribution of writes in NVRAM with low overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duan R, Bi M, Gniady C (2011) Exploring memory energy optimizations in smartphones. In: Proceedings of the international green computing conference and workshops (IGCC ’11), pp 1–8

    Google Scholar 

  2. Perrucci G, Fitzek F, Widmer J (2011) Survey on energy consumption entities on the smartphone platform. In: Proceedings of the IEEE 73rd vehicular technology conference (VTC ’11), pp 1–6

    Google Scholar 

  3. Wong HSP, Raoux S, Kim S, Liang J, Reifenberg JP, Rajendran B, Asheghi M, Goodson KE (2010) Phase change memory,” Proc IEEE 98(12):2201–2227

    Article  Google Scholar 

  4. Cho S, Lee H, Flip-n-write: a simple deterministic technique to improve pram write performance, energy and endurance. In: Proceedings of the 42nd annual IEEE/ACM international symposium on microarchitecture (MICRO ’09), pp 347–357

    Google Scholar 

  5. Hu J, Xue CJ, Zhuge Q, Tseng W-C, Sha EH-M (2013) Write activity reduction on non-volatile main memories for embedded chip multiprocessors. ACM Trans Embed Comput Syst 12(3):77:1–77:27

    Google Scholar 

  6. Lee BC, Ipek E, Mutlu O, Burger D (2009) Architecting phase change memory as a scalable DRAM alternative. In: Proceedings of the 36th annual international symposium on computer architecture (ISCA ’09), pp 2–13

    Google Scholar 

  7. Qureshi MK, Karidis J, Franceschini M, Srinivasan V, Lastras L, Abali B (2009) Enhancing lifetime and security of PCM-based main memory with start-gap wear leveling. In: Proceedings of the 42nd annual IEEE/ACM international symposium on microarchitecture (MICRO ’09), pp 14–23

    Google Scholar 

  8. Qureshi MK, Srinivasan V, Rivers JA (2009) Scalable high performance main memory system using phase-change memory technology. In: Proceedings of the 36th annual international symposium on computer architecture (ISCA ’09), pp 24–33

    Google Scholar 

  9. Dhiman G, Ayoub R, Rosing T (2009) PDRAM: a hybrid PRAM and DRAM main memory system. In: Proceedings of the 46th annual design automation conference (DAC ’09), pp 664–469

    Google Scholar 

  10. Ferreira AP, Zhou M, Bock S, Childers B, Melhem R, Mossé D (2010) Increasing PCM main memory lifetime. In: Proceedings of the conference on design, automation and test in Europe (DATE ’10), pp 914–919

    Google Scholar 

  11. Hosomi M, Yamagishi H, Yamamoto T, Bessho K, Higo Y, Yamane K, Yamada H, Shoji M, Hachino H, Fukumoto C, Nagao H, Kano H (2005) A novel nonvolatile memory with spin torque transfer magnetization switching: spin-RAM. In: Proceedings of the IEEE international on electron devices meeting (IEDM ’05), pp 459–462

    Google Scholar 

  12. Oboril F, Bishnoi R, Ebrahimi M, Tahoori M (2015) Evaluation of hybrid memory technologies using SOT-MRAM for on-chip cache hierarchy. IEEE Trans Comput Aided Des Integr Circuits Syst 34(3):367–380

    Article  Google Scholar 

  13. Wen W, Zhang Y, Chen Y, Wang Y, Xie Y (2014) PS3-RAM: a fast portable and scalable statistical STT-RAM reliability/energy analysis method. IEEE Trans Comput Aided Des Integr Circuits Syst (TCAD) 33(11):1644–1656

    Article  Google Scholar 

  14. Xue CJ, Zhang Y, Chen Y, Sun G, Yang JJ, Li H (2011) Emerging non-volatile memories: opportunities and challenges. In: Proceedings of the seventh IEEE/ACM/IFIP international conference on hardware/software codesign and system synthesis (CODES+ISSS ’11), pp 325–334

    Google Scholar 

  15. International Technology Roadmap for Semiconductors (2007) Process integration, devices, and structures (2007 edition). http://developer.intel.com

  16. Xie Y (2011) Modeling, architecture, and applications for emerging memory technologies. IEEE Des Test Comput 28(1):44–51

    Article  Google Scholar 

  17. Chung T-S, Park D-J, Park S, Lee D-H, Lee S-W, Song H-J (2009) A survey of flash translation layer. J Syst Archit 55(5–6):332–343

    Article  Google Scholar 

  18. Ban A (1995) Flash file system. US patent 5,404,485

    Google Scholar 

  19. Ban A (1999) Flash file system optimized for page-mode flash technologies. US patent 5,937,425

    MathSciNet  Google Scholar 

  20. Wu C-H, Kuo T-W (2006) An adaptive two-level management for the flash translation layer in embedded systems. In: Proceedings of the 2006 IEEE/ACM international conference on computer-aided design (ICCAD ’06), pp 601–606

    Google Scholar 

  21. Chang Y-H, Hsieh J-W, Kuo T-W (2007) Endurance enhancement of flash-memory storage systems: an efficient static wear leveling design. In: Proceedings of the 44th annual conference on design automation (DAC ’07), pp 212–217

    Google Scholar 

  22. Wang Y, Liu D, Wang M, Qin Z, Shao Z, Guan Y (2010) RNFTL: a reuse-aware NAND flash translation layer for flash memory. In: Proceedings of the ACM SIGPLAN/SIGBED 2010 conference on languages, compilers, and tools for embedded systems (LCTES ’10), pp 163–172

    Google Scholar 

  23. Wang Y, Liu D, Qin Z, Shao Z (2011) An endurance-enhanced flash translation layer via reuse for NAND flash memory storage systems. In: Proceedings of the conference on design, automation and test in Europe (DATE ’11), pp 1–6

    Google Scholar 

  24. Qin Z, Wang Y, Liu D, Shao Z (2011) A two-level caching mechanism for demand-based page-level address mapping in NAND flash memory storage systems. In: Proceedings of the 17th IEEE real-time and embedded technology and applications symposium (RTAS ’11), pp 157–166

    Google Scholar 

  25. Qin Z, Wang Y, Liu D, Shao Z (2010) Demand-based block-level address mapping in large-scale NAND flash storage systems. In: Proceedings of the eighth IEEE/ACM/IFIP international conference on hardware/software codesign and system synthesis (CODES/ISSS ’10), pp 173–182

    Google Scholar 

  26. Qin Z, Wang Y, Liu D, Shao Z, Guan Y (2011) MNFTL: an efficient flash translation layer for MLC NAND flash memory storage systems. In: Proceedings of the 48th design automation conference (DAC ’11), pp 17–22

    Google Scholar 

  27. Liu D, Wang Y, Qin Z, Shao Z, Guan Y (2011) A space reuse strategy for flash translation layers in SLC NAND flash memory storage systems. IEEE Trans Very Large Scale Integr (VLSI) Syst 20(6):1094–1107

    Google Scholar 

  28. Kim JK, Lee HG, Choi S, Bahng KI (2008) A PRAM and NAND flash hybrid architecture for high-performance embedded storage subsystems. In: Proceedings of the 8th ACM international conference on embedded software (EMSOFT ’08), pp 31–40

    Google Scholar 

  29. Wang J, Dong X, Xie Y, Jouppi N (2013) i2WAP: improving non-volatile cache lifetime by reducing inter- and intra-set write variations. In: IEEE 19th international symposium on high performance computer architecture (HPCA ’13), pp 234–245

    Google Scholar 

  30. Joo Y, Niu D, Dong X, Sun G, Chang N, Xie Y (2010) Energy- and endurance-aware design of phase change memory caches. In: Proceedings of the conference on design, automation and test in Europe (DATE ’10), pp 136–141

    Google Scholar 

  31. Qureshi M, Franceschini M, Lastras-Montano L (2010) Improving read performance of phase change memories via write cancellation and write pausing. In: IEEE 16th international symposium on high performance computer architecture (HPCA ’10), pp 1–11

    Google Scholar 

  32. Hu J, Xue CJ, Tseng W-C, He Y, Qiu M, Sha EH-M (2010) Reducing write activities on non-volatile memories in embedded CMPs via data migration and recomputation. In: Proceedings of the 47th design automation conference (DAC ’10), pp 350–355

    Google Scholar 

  33. Hu J, Xue CJ, Zhuge Q, Tseng W-C, Sha EH-M (2013) Write activity reduction on non-volatile main memories for embedded chip multiprocessors. ACM Trans Embed Comput Syst 12(3):77:1–77:27

    Google Scholar 

  34. Ferreira A, Childers B, Melhem R, Mosse D, Yousif M (2010) Using PCM in next-generation embedded space applications. In: 2010 16th IEEE real-time and embedded technology and applications symposium (RTAS ’10), pp 153–162

    Google Scholar 

  35. Akyildiz I, Su W, Sankarasubramaniam Y, Cayirci E (2002) A survey on sensor networks. IEEE Commun Mag 40(8):102–114

    Article  Google Scholar 

  36. Micron Technology, Inc. (2011) Micron phase change memory. http://www.micron.com/products/pcm/

  37. Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453:80–83

    Google Scholar 

  38. Zhou P, Zhao B, Yang J, Zhang Y (2009) A durable and energy efficient main memory using phase change memory technology. In: Proceedings of the 36th annual international symposium on computer architecture (ISCA ’09), pp 14–23

    Google Scholar 

  39. Lee B, Zhou P, Yang J, Zhang Y, Zhao B, Ipek E, Mutlu O, Burger D (2010) Phase-change technology and the future of main memory. IEEE Micro 30(1):143–143

    Article  Google Scholar 

  40. Yang B-D, Lee J-E, Kim J-S, Cho J, Lee S-Y, Yu BG (2007) A low power phase-change random access memory using a data-comparison write scheme. In: IEEE international symposium on circuits and systems (ISCAS ’07), pp 3014–3017

    Google Scholar 

  41. DiskMon for Windows (2006) http://technet.microsoft.com/en-us/sysinternals/bb896646.aspx

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duo Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, D., Zhong, K. (2017). NVRAM-Assisted Optimization Techniques for Flash Memory Management in Embedded Sensor Nodes. In: Kyung, CM., Yasuura, H., Liu, Y., Lin, YL. (eds) Smart Sensors and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-33201-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33201-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33200-0

  • Online ISBN: 978-3-319-33201-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics