Skip to main content

Central Representation of Itch

  • Chapter
  • First Online:
Pruritus

Abstract

Chronic itch is multidimensional phenomenon associated with emotional and cognitive aspects of suffering that causes the urge to scratch. The brain is the final terminal to receive itch-related neural signals from the body and to process them. Thus, it is important to better understand the mechanism of itch and its behavioral response of scratching in the brain. Brain imaging studies using positron emission tomography, functional MRI, electroencephalography, and magnetoencephalography have been conducted to understand the cerebral mechanism of itch mainly in healthy subjects using experimental itch models. Several brain imaging studies have investigated this mechanism in chronic itch patients to better understand the pathophysiology of chronic itch in the central nervous system. Pharmacological functional MRI studies add to our understanding of drug-effects on brain systems. Recently, this technique was used to investigate how a kappa opioid drug butoprhanol, modulates the processing of itch in the brain. Other promising treatments targeting the brain such as non-invasive transcranial Direct Current Stimulation that has been used for treatments of chronic pain has been reported for itch relief. In this chapter, we review the current progress in neuroimaging research of itch and scratch and its treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akiyama T, Carstens E. Neural processing of itch. Neuroscience. 2013;250:697–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Antal A, Brepohl N, Poreisz C, Boros K, Csifcsak G, Paulus W. Transcranial direct current stimulation over somatosensory cortex decreases experimentally induced acute pain perception. Clin J Pain. 2008;24:56–63.

    Article  PubMed  Google Scholar 

  3. Antal A, Terney D, Kühnl S, Paulus W. Anodal transcranial direct current stimulation of the motor cortex ameliorates chronic pain and reduces short intracortical inhibition. J Pain Symptom Manage. 2010;39:890–903.

    Article  PubMed  Google Scholar 

  4. Bär KJ, Gaser C, Nenadic I, Sauer H. Transient activation of a somatosensory area in painful hallucinations shown by fMRI. Neuroreport. 2002;13:805–8.

    Article  PubMed  Google Scholar 

  5. Bornhövd K, Quante M, Glauche V, Bromm B, Weiller C, Büchel C. Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain. 2002;125:1326–36.

    Article  PubMed  Google Scholar 

  6. Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006;129:564–83.

    Article  PubMed  Google Scholar 

  7. DaSilva AF, Mendonca ME, Zaghi S, Lopes M, Dossantos MF, Spierings EL, Bajwa Z, Datta A, Bikson M, Fregni F. tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine. Headache. 2012;52:1283–95.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dawn AG, Yosipovitch G. Butorphanol for treatment of intractable pruritus. J Am Acad Dermatol. 2006;54:527–31.

    Article  PubMed  Google Scholar 

  9. de Andrade DC, Mhalla A, Adam F, Texeira MJ, Bouhassira D. Neuropharmacological basis of rTMS-induced analgesia: the role of endogenous opioids. Pain. 2011;152:320–6.

    Article  PubMed  Google Scholar 

  10. Deecke L, Kornhuber HH. An electrical sign of participation of the mesial ‘supplementary’ motor cortex in human voluntary finger movement. Brain Res. 1978;159:473–6.

    Article  CAS  PubMed  Google Scholar 

  11. Dong WK, Salonen LD, Kawakami Y, Shiwaku T, Kaukoranta EM, Martin RF. Nociceptive responses of trigeminal neurons in SII-7b cortex of awake monkeys. Brain Res. 1989;484:314–24.

    Article  CAS  PubMed  Google Scholar 

  12. Dong WK, Chudler EH, Sugiyama K, Roberts VJ, Hayashi T. Somatosensory, multisensory, and task-related neurons in cortical area 7b (PF) of unanesthetized monkeys. J Neurophysiol. 1994;72:542–64.

    CAS  PubMed  Google Scholar 

  13. Drzezga A, Darsow U, Treede RD, Siebner H, Frisch M, Munz F, Weilke F, Ring J, Schwaiger M, Bartenstein P. Central activation by histamine-induced itch: analogies to pain processing: a correlational analysis of O-15 H2O positron emission tomography studies. Pain. 2001;92:295–305.

    Article  CAS  PubMed  Google Scholar 

  14. Emerson NM, Zeidan F, Lobanov OV, Hadsel MS, Martucci KT, Quevedo AS, Starr CJ, Nahman-Averbuch H, Weissman-Fogel I, Granovsky Y, Yarnitsky D, Coghill RC. Pain sensitivity is inversely related to regional grey matter density in the brain. Pain. 2014;155:566–73.

    Article  PubMed  Google Scholar 

  15. Faymonville ME, Boly M, Laureys S. Functional neuroanatomy of the hypnotic state. J Physiol Paris. 2006;99:463–9.

    Article  PubMed  Google Scholar 

  16. Filbey FM, Claus E, Audette AR, Niculescu M, Banich MT, Tanabe J, Du YP, Hutchison KE. Exposure to the taste of alcohol elicits activation of the mesocorticolimbic neurocircuitry. Neuropsychopharmacology. 2008;33:1391–401.

    Article  CAS  PubMed  Google Scholar 

  17. Fregni F, Boggio PS, Lima MC, Ferreira MJ, Wagner T, Rigonatti SP, Castro AW, Souza DR, Riberto M, Freedman SD, Nitsche MA, Pascual-Leone A. A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain. 2006;122:197–209.

    Article  PubMed  Google Scholar 

  18. Fregni F, Gimenes R, Valle AC, Ferreira MJ, Rocha RR, Natalle L, Bravo R, Rigonatti SP, Freedman SD, Nitsche MA, Pascual-Leone A, Boggio PS. A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum. 2006;54:3988–98.

    Article  PubMed  Google Scholar 

  19. Fregni F, Freedman S, Pascual-Leone A. Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques. Lancet Neurol. 2007;6:188–91.

    Article  PubMed  Google Scholar 

  20. Fried I, Katz A, McCarthy G, Sass KJ, Williamson P, Spencer SS, Spencer DD. Functional organization of human supplementary motor cortex studied by electrical stimulation. J Neurosci. 1991;11:3656–66.

    CAS  PubMed  Google Scholar 

  21. Frot M, Magnin M, Mauguière F, Garcia-Larrea L. Human SII and posterior insula differently encode thermal laser stimuli. Cereb Cortex. 2007;17:610–20.

    Article  PubMed  Google Scholar 

  22. Gemba H, Hashimoto S, Sasaki K. Cortical field potentials preceding visually initiated hand movements in the monkey. Exp Brain Res. 1981;42:435–41.

    CAS  PubMed  Google Scholar 

  23. Gemba H, Sasaki K, Tsujimoto T. Cortical field potentials associated with hand movements triggered by warning and imperative stimuli in the monkey. Neurosci Lett. 1990;113:275–80.

    Article  CAS  PubMed  Google Scholar 

  24. Herde L, Forster C, Strupf M, Handwerker HO. Itch induced by a novel method leads to limbic deactivations a functional MRI study. J Neurophysiol. 2007;98:2347–56.

    Article  PubMed  Google Scholar 

  25. Heide W, Binkofski F, Seitz RJ, Posse S, Nitschke MF, Freund HJ, Kömpf D. Activation of frontoparietal cortices during memorized triple-step sequences of saccadic eye movements: an fMRI study. Eur J Neurosci. 2001;13:1177–89.

    Article  CAS  PubMed  Google Scholar 

  26. Hsieh JC, Hägermark O, Ståhle-Bäckdahl M, Ericson K, Eriksson L, Stone-Elander S, Ingvar M. Urge to scratch represented in the human cerebral cortex during itch. J Neurophysiol. 1994;72:3004–8.

    CAS  PubMed  Google Scholar 

  27. Holle H, Warne K, Seth AK, Critchley HD, Ward J. Neural basis of contagious itch and why some people are more prone to it. Proc Natl Acad Sci U S A. 2012;109:19816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ishiuji Y, Coghill RC, Patel TS, Oshiro Y, Kraft RA, Yosipovitch G. Distinct patterns of brain activity evoked by histamine-induced itch reveal an association with itch intensity and disease severity in atopic dermatitis. Br J Dermatol. 2009;161:1072–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Izuma K, Saito DN, Sadato N. Processing of social and monetary rewards in the human striatum. Neuron. 2008;58:284–94.

    Article  CAS  PubMed  Google Scholar 

  30. Knotkova H, Portenoy RK, Cruciani RA. Transcranial direct current stimulation (tDCS) relieved itching in a patient with chronic neuropathic pain. Clin J Pain. 2013;29:621–2.

    Article  PubMed  Google Scholar 

  31. Kühn S, Gallinat J. The neural correlates of subjective pleasantness. Neuroimage. 2012;64:289–94.

    Article  Google Scholar 

  32. LaBar KS, Gitelman DR, Parrish TB, Mesulam M. Neuroanatomic overlap of working memory and spatial attention networks: a functional MRI comparison within subjects. Neuroimage. 1999;10:695–704.

    Article  CAS  PubMed  Google Scholar 

  33. Lacourse MG, Orr EL, Cramer SC, Cohen MJ. Brain activation during execution and motor imagery of novel and skilled sequential hand movements. Neuroimage. 2005;27:505–19.

    Article  PubMed  Google Scholar 

  34. Leknes SG, Bantick S, Willis CM, Wilkinson JD, Wise RG, Tracey I. Itch and motivation to scratch: an investigation of the central and peripheral correlates of allergen- and histamine-induced itch in humans. J Neurophysiol. 2007;97:415–22.

    Article  PubMed  Google Scholar 

  35. Lima MC, Fregni F. Motor cortex stimulation for chronic pain: systematic review and meta-analysis of the literature. Neurology. 2008;70:2329–37.

    Article  PubMed  Google Scholar 

  36. Mantovani A, Rossi S, Bassi BD, Simpson HB, Fallon BA, Lisanby SH. Modulation of motor cortex excitability in obsessive-compulsive disorder: an exploratory study on the relations of neurophysiology measures with clinical outcome. Psychiatry Res. 2013;210:1026–32.

    Article  PubMed  Google Scholar 

  37. McCabe C, Rolls ET. Umami: a deliciousflavor formed by convergence of taste and olfactory pathways in the human brain. Eur J Neurosci. 2007;25:1855–64.

    Article  PubMed  Google Scholar 

  38. Mochizuki H, Tashiro M, Kano M, Sakurada Y, Itoh M, Yanai K. Investigation of the central itch modulation system using positron emission tomography. Pain. 2003;105:339–46.

    Article  PubMed  Google Scholar 

  39. Mochizuki H, Sadato N, Saitoh D, Toyoda H, Tashiro M, Okamura N, Yanai K. Neural correlates of perceptual difference between itching and pain using functional magnetic resonance imaging. Neuroimage. 2007;36:706–17. Erratum in Neuroimage. 2008; 39: 911–912.

    Article  PubMed  Google Scholar 

  40. Mochizuki H, Inui K, Yamashiro K, Ootsuru N, Kakigi R. Itching-related somatosensory evoked potentials. Pain. 2008;138:598–603.

    Article  PubMed  Google Scholar 

  41. Mochizuki H, Inui K, Tanabe HC, Akiyama LF, Otsuru N, Yamashiro K, Sasaki A, Nakata H, Sadato N, Kakigi R. Time course of activity in itch-related brain regions: a combined MEG-fMRI study. J Neurophysiol. 2009;102:2657–66.

    Article  PubMed  Google Scholar 

  42. Mochizuki H, Baumgärtner U, Kamping S, Ruttorf M, Schad LR, Flor H, Kakigi R, Treede RD. Cortico-subcortical activation patterns for itch and pain imagery. Pain. 2013;154:1989–98.

    Article  PubMed  Google Scholar 

  43. Mochizuki H, Tanaka S, Morita T, Wasaka T, Sadato N, Kakigi R. The cerebral representation of scratching-induced pleasantness. J Neurophysiol. 2014;111:488–98.

    Article  PubMed  Google Scholar 

  44. Mochizuki H, Papoiu AD, Nattkemper LA, Lin AC, Kraft RA, Coghill RC, Yosipovitch G. Scratching induces overactivity in motor-related regions and reward system in chronic itch patients. J Invest Dermatol. 2015;135(11):2814–23. doi: 10.1038/jid.2015.223.

    Google Scholar 

  45. Mori F, Codecà C, Kusayanagi H, Monteleone F, Buttari F, Fiore S, Bernardi G, Koch G, Centonze D. Effects of anodal transcranial direct current stimulation on chronic neuropathic pain in patients with multiple sclerosis. J Pain. 2010;11:436–42.

    Article  PubMed  Google Scholar 

  46. Nakagawa K, Mochizuki H, Koyama S, Tanaka S, Sadato N, Kakigi R. A transcranial direct current stimulation over the sensorimotor cortex modulates the itch sensation induced by histamine. Clin Neurophysiol. 2016;127(1):827–32. doi: 10.1016/j.clinph.2015.07.003.

    Google Scholar 

  47. Niemeier V, Kupferb J, Gielerc U. Observations during an itch-inducing lecture. Dermatol Psychosom. 2000;1:15–8.

    Article  Google Scholar 

  48. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, Hummel F, Boggio PS, Fregni F, Pascual-Leone A. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1:206–23.

    Article  PubMed  Google Scholar 

  49. Ogiso T, Kobayashi K, Sugishita M. The precuneus in motor imagery: a magnetoencephalographic study. Neuroreport. 2000;11:1345–9.

    Article  CAS  PubMed  Google Scholar 

  50. Papoiu AD, Wang H, Coghill RC, Chan YH, Yosipovitch G. Contagious itch in humans: a study of visual ‘transmission’ of itch in atopic dermatitis and healthy subjects. Br J Dermatol. 2011;164:1299–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Papoiu AD, Coghill RC, Kraft RA, Wang H, Yosipovitch G. A tale of two itches common features and notable differences in brain activation evoked by cowhage and histamine induced itch. Neuroimage. 2012;59:3611–23.

    Article  PubMed  Google Scholar 

  52. Papoiu AD, Nattkemper LA, Sanders KM, Kraft RA, Chan YH, Coghill RC, Yosipovitch G. Brain’s reward circuits mediate itch relief. a functional MRI study of active scratching. PLoS One. 2013;8, e82389.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Papoiu AD, Emerson NM, Patel TS, Kraft RA, Valdes-Rodriguez R, Nattkemper LA, Coghill RC, Yosipovitch G. Voxel-based morphometry and arterial spin labeling fMRI reveal neuropathic and neuroplastic features of brain processing of itch in end-stage-renal-disease. Neurophysiology. 2014;112:1729–38.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Papoiu AD, Kraft RA, Coghill RC, Yosipovitch G. Butorphanol suppression of histamine itch is mediated by nucleus accumbens and septal nuclei: a pharmacological fMRI study. J Invest Dermatol. 2015;135:560–8.

    Article  CAS  PubMed  Google Scholar 

  55. Peckys D, Landwehrmeyer GB. Expression of mu, kappa, and delta opioid receptor messenger RNA in the human CNS: a 33P in situ hybridization study. Neuroscience. 1999;88:1093–135.

    Article  CAS  PubMed  Google Scholar 

  56. Peckys D, Hurd YL. Prodynorphin and kappa opioid receptor mRNA expression in the cingulate and prefrontal cortices of subjects diagnosed with schizophrenia or affective disorders. Brain Res Bull. 2001;55:619–24.

    Article  CAS  PubMed  Google Scholar 

  57. Roesch MR, Olson CR. Impact of expected reward on neuronal activity in prefrontal cortex, frontal and supplementary eye fields and premotor cortex. J Neurophysiol. 2003;90:1766–89.

    Article  PubMed  Google Scholar 

  58. Salimpoor VN, Benovoy M, Larcher K, Dagher A, Zatorre RJ. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat Neurosci. 2011;257:257–62.

    Article  Google Scholar 

  59. Schmelz M, Schmidt R, Weidner C, Hilliges M, Torebjork HE, Handwerker HO. Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens. J Neurophysiol. 2003;89:2441–8.

    Article  CAS  PubMed  Google Scholar 

  60. Schneider G, Ständer S, Burgmer M, Driesch G, Heuft G, Weckesser M. Significant differences in central imaging of histamine-induced itch between atopic dermatitis and healthy subjects. Eur J Pain. 2008;12:834–41.

    Article  CAS  PubMed  Google Scholar 

  61. Schulz-Stu¨bner S, Krings T, Meister IG, Rex S, Thron A, Rossaint R. Clinical hypnosis modulates functional magnetic resonance imaging signal intensities and pain perception in a thermal stimulation paradigm. Reg Anesth Pain Med. 2004;29:549–56.

    Article  Google Scholar 

  62. Simon SR, Meunier M, Piettre L, Berardi AM, Segebarth CM, Boussaoud D. Spatial attention and memory versus motor preparation: premotor cortex involvement as revealed by fMRI. J Neurophysiol. 2002;88:2047–57.

    PubMed  Google Scholar 

  63. Szameitat AJ, Shen S, Sterr A. Motor imagery of complex everyday movements. An fMRI study. Neuroimage. 2007;34:702–13.

    Article  PubMed  Google Scholar 

  64. Tamura Y, Hoshiyama M, Inui K, Nakata H, Qiu Y, Ugawa Y, Inoue K, Kakigi R. Facilitation of A[delta]-fiber-mediated acute pain by repetitive transcranial magnetic stimulation. Neurology. 2004;62:2176–81.

    Article  CAS  PubMed  Google Scholar 

  65. Tamura Y, Okabe S, Ohnishi TN, Saito D, Arai N, Mochio S, Inoue K, Ugawa Y. Effects of 1-Hz repetitive transcranial magnetic stimulation on acute pain induced by capsaicin. Pain. 2004;107:107–15.

    Article  PubMed  Google Scholar 

  66. Timmermann L, Ploner M, Haucke K, Schmitz F, Baltissen R, Schnitzler A. Differential coding of pain intensity in the human primary and secondary somatosensory cortex. J Neurophysiol. 2001;86:1499–503.

    CAS  PubMed  Google Scholar 

  67. Valle A, Roizenblatt S, Botte S, Zaghi S, Riberto M, Tufik S, Boggio PS, Fregni F. Efficacy of anodal transcranial direct current stimulation (tDCS) for the treatment of fibromyalgia: results of a randomized, sham-controlled longitudinal clinical trial. J Pain Manag. 2009;2:353–61.

    PubMed  PubMed Central  Google Scholar 

  68. Walter B, Sadlo MN, Kupfer J, Niemeier V, Brosig B, Stark R, Vaitl D, Gieler U. Brain activation by histamine prick test-induced itch. J Invest Dermatol. 2005;125:380–2.

    CAS  PubMed  Google Scholar 

  69. Yosipovitch G, Goon AT, Wee J, Chan YH, Zucker I, Goh CL. Itch characteristics in Chinese patients with atopic dermatitis using a new questionnaire for the assessment of pruritus. Int J Dermatol. 2002;41:212–6.

    Article  PubMed  Google Scholar 

  70. Yosipovitch G, Ishiuji Y, Patel TS, Hicks MI, Oshiro Y, Kraft RA, Winnicki E, Coghill RC. The brain processing of scratching. J Invest Dermatol. 2008;128:1806–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors wish to thank Mrs. Alina Shevchenko and Dr. Alexandre D Papoiu for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil Yosipovitch MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Mochizuki, H., Yosipovitch, G. (2016). Central Representation of Itch. In: Misery, L., Ständer, S. (eds) Pruritus. Springer, Cham. https://doi.org/10.1007/978-3-319-33142-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33142-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33140-9

  • Online ISBN: 978-3-319-33142-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics