Skip to main content

Evo-Devo of Butterfly Wing Patterns

  • Living reference work entry
  • First Online:
Evolutionary Developmental Biology

Abstract

The evolution and development of lepidopteran wing patterns are a valuable system for understanding cellular development and differentiation of phenotypes with clear ecological functions. Butterfly wings are only two cells thick, with single epithelia making up the dorsal and ventral wing surfaces. The color patterns found on lepidopteran wings are formed from a mosaic of scale cells containing pigments or with structural coloration caused by the reflection of particular light wavelengths by ridges found on scale surfaces. Butterfly color patterns are laid down on top of a preexisting developmental genetic architecture that directs wing development and which determines the shape of each wing, allows for the functional specialization of forewings and hindwings and of dorsal and ventral wing surfaces, and which specifies the positions of the longitudinal veins on the wing. This architecture also provides a mechanism by which different regions on the wing can be regulated independently of one another. The Nymphalid ground plan is an archetype that can be used to compare and homologize color patterns from different Lepidoptera species. Many genes related to the determination of many color pattern elements within the Nymphalid ground plan have been identified, and for border ocelli (or eyespot) patterns in particular, a large genetic regulatory network for pattern formation and differentiation has been assembled. Many Lepidoptera model species have contributed to our understanding of butterfly color pattern development and evolution, but recent comparative genomic work examining of intraspecific and interspecific variation in Heliconius has identified new genes with important roles in pattern development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbasi R, Marcus JM (2015) Colour pattern homology and evolution in Vanessa butterflies (Nymphalidae: Nymphalini): eyespot characters. J Evol Biol 28:2009–2026

    Article  CAS  Google Scholar 

  • Abbasi R, Marcus JM (2017) A new A-P compartment boundary and organizer in holometabolous insect wings. Sci Rep 7:16337. https://doi.org/10.1038/s41598-017-16553-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brakefield PM, Gates J, Keys D, Kesbeke F, Wijngaarden PJ, Monteiro A, French V, Carroll SB (1996) Development, plasticity and evolution of butterfly eyespot patterns. Nature 384:236–242

    Article  CAS  Google Scholar 

  • Brunetti CR, Selegue JE, Monteiro A, French V, Brakefield PM, Carroll SB (2001) The generation and diversification of butterfly eyespot colour patterns. Curr Biol 11:1578–1585

    Article  CAS  Google Scholar 

  • Carroll SB, Gates J, Keys DN, Paddock SW, Panganiban GEF, Selegue JE, Williams JA (1994) Pattern formation and eyespot determination in butterfly wings. Science 265:109–114

    Article  CAS  Google Scholar 

  • Dinwiddie A, Null R, Pizzano M, Chuong L, Leigh Krup A, Ee Tan H, Patel NH (2014) Dynamics of F-actin prefigure the structure of butterfly wing scales. Dev Biol 392:404–418

    Article  CAS  Google Scholar 

  • Evans TM, Marcus JM (2006) A simulation study of the genetic regulatory hierarchy for butterfly eyespot focus determination. Evol Dev 8(3):273–283

    Article  Google Scholar 

  • Heliconius Genome Consortium (2012) Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487:94–98. https://doi.org/10.1038/nature11041

    Article  CAS  Google Scholar 

  • Iwasaki M, Ohno Y, Otaki JM (2017) Butterfly eyespot organiser: in vivo imaging of the prospective focal cells in pupal wing tissues. Sci Rep 7:40705

    Article  CAS  Google Scholar 

  • Keys DN, Lewis DL, Selegue JE, Pearson BJ, Goodrich LV, Johnson RJ, Gates J, Scott MP, Carroll SB (1999) Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution. Science 283:532–534

    Article  CAS  Google Scholar 

  • Marcus JM (2005) Jumping genes and AFLP maps: transforming lepidopteran color pattern genetics. Evol Dev 7(2):108–114

    Article  CAS  Google Scholar 

  • Marcus JM (2018) Our love-hate relationship with DNA barcodes, the Y2K problem, and the search for next generation barcodes. AIMS Genetics 5(1):1–23. https://doi.org/10.3934/genet.2018.1.1

    Article  Google Scholar 

  • Marcus JM, Evans TM (2008) A simulation study of mutations in the genetic regulatory hierarchy for butterfly eyespot focus determination. Biosystems 93(3):250–255

    Article  CAS  Google Scholar 

  • Martin A, Reed RD (2014) Wnt signaling underlies evolution and development of the butterfly wing pattern symmetry systems. Dev Biol 395(2):367–378

    Article  CAS  Google Scholar 

  • Martin A, Papa R, Nadeau JH et al (2012) Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proc Natl Acad Sci USA 109:12632–12637

    Article  CAS  Google Scholar 

  • Matsuoka Y, Monteiro A (2018) Melanin pathway genes regulate color and morphology of butterfly wing scales. Cell Rep 24(1):56–65

    Article  CAS  Google Scholar 

  • Monteiro A, Glaser G, Stockslager S, Glansdorp N, Ramos D (2006) Comparative insights into questions of lepidopetran wing pattern homology. BMC Dev Biol 6:52

    Article  Google Scholar 

  • Nadeau NJ, Pardo-Diaz C, Whibley A et al (2016) The gene cortex controls mimicry and crypsis in butterflies and moths. Nature 534:106

    Article  CAS  Google Scholar 

  • Nijhout HF (1991) The development and evolution of butterfly wing patterns. Smithsonian Institution Press, Washington

    Google Scholar 

  • Nijhout HF (1996) Focus on butterfly eyespot development. Nature 384:209–210

    Article  CAS  Google Scholar 

  • Nijhout HF, Wray GA (1988) Homologies in the colour patterns of the genus Heliconius (lepidopteran: Nymphalidae). Biol J Linn Soc 33:345–365

    Article  Google Scholar 

  • Otaki JM (2011) Color-pattern analysis of eyespots in butterfly wings: a critical examination of morphogen gradient models. Zool Sci 28:403–413

    Article  Google Scholar 

  • Otaki JM (2012) Color pattern analysis of nymphalid butterfly wings: revision of the nymphalid groundplan. Zool Sci 29(9):568–576

    Article  Google Scholar 

  • Özsu N, Monteiro A (2017) Wound healing, calcium signaling, and other novel pathways are associated with the formation of butterfly eyespots. BMC Genomics 18:788

    Article  Google Scholar 

  • Özsu N, Chan QY, Chen B, Das Gupta M, Monteiro A (2017) Wingless is a positive regulator of eyespot color patterns in Bicyclus anynana butterflies. Dev Biol 429(1):177–185

    Article  Google Scholar 

  • Parnell AJ, Bradford JE, Curran EV et al (2018) Wing scale ultrastructure underlying convergent and divergent iridescent colours in mimetic Heliconius butterflies. J R Soc Interface 15(141):20170948

    Article  Google Scholar 

  • Prakash A, Monteiro A (2018) apterous A specifies dorsal wing patterns and sexual traits in butterflies. Proc R Soc Lond B 285:20172685. https://doi.org/10.1098/rspb.2017.2685

    Article  CAS  Google Scholar 

  • Reed RD, Papa R, Martin A et al (2011) Optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science 333(6046):1137–1141

    Article  CAS  Google Scholar 

  • Schachat SR, Brown RL (2016) Forewing color pattern in Micropterigidae (Insecta: Lepidoptera): homologies between contrast boundaries, and a revised hypothesis for the origin of symmetry systems. BMC Evol Biol 16:116. https://doi.org/10.1186/s12862-016-0687-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwanwitsch BN (1924) On the groundplan of wing-pattern in nymphalids and certain other families of rhopalocerous Lepidoptera. Proc R Soc Lond B 34:509–528

    Google Scholar 

  • Tong X, Lindemann A, Monteiro A (2012) Differential involvement of hedgehog signaling in butterfly wing and eyespot development. PLoS One 7(12):e51087. https://doi.org/10.1371/journal.pone.0051087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong X, Hrycaj S, Podlaha O, Popadic A, Monteiro A (2014) Over-expression of Ultrabithorax alters embryonic body plan and wing patterns in the butterfly Bicyclus anynana. Dev Biol 394(2):357–366

    Article  CAS  Google Scholar 

  • van’t Hof AE, Campagne P, Rigden DJ, Yung CJ, Lingley J, Quail MA, Hall N, Darby AC, Saccheri IJ (2016) The industrial melanism mutation in British peppered moths is a transposable element. Nature 534:102–105

    Article  Google Scholar 

  • Weatherbee SD, Nijhout HF, Grunert LW, Halder G, Galant R, Selegue J, Carroll S (1999) Ultrabithorax function in butterfly wings and the evolution of insect wing patterns. Curr Biol 9(3):109–115

    Article  CAS  Google Scholar 

  • Westerman EL, VanKuren NW, Massardo D et al (2018) Aristaless controls butterfly wing color variation used in mimicry and mate choice. Curr Biol. https://doi.org/10.1016/j.cub.2018.08.051

    Article  Google Scholar 

  • Zhang L, Reed RD (2016) Genome editing in butterflies reveals that Spalt promotes and distal-less represses eyespot colour patterns. Nat Commun 7:11769. https://doi.org/10.1038/ncomms11769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Marcus .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Marcus, J.M. (2019). Evo-Devo of Butterfly Wing Patterns. In: Nuno de la Rosa, L., Müller, G. (eds) Evolutionary Developmental Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-33038-9_174-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33038-9_174-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33038-9

  • Online ISBN: 978-3-319-33038-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics