Skip to main content

Developmental Plasticity and Evolution

  • Living reference work entry
  • First Online:
Evolutionary Developmental Biology

Abstract

The environment plays a crucial role in the developing organism, first in defining the developmental trajectory from genotype to phenotype, then by modifying that trajectory by natural selection. Nearly all traits exhibit some degree of phenotypic plasticity: the capacity to change, or to develop in response to, the environment. The plasticity of a trait can itself evolve, and some of the most specialized adaptations include evolved responses to environmental variation. Plasticity has long been theorized to potentiate adaptive evolution, by environmental induction of phenotypes that boosts the potential for subsequent genetic evolution or by revealing cryptic alleles in new environments that in turn generate new adaptive phenotypes. A plastic trait may vary continuously, which can be described by norms of reaction, or it may produce discrete types as a polyphenism, a codified adaptive response to specific environmental signals. The concept of plasticity can also be applied to variation in phenotype associated with a single genotype in a single environment. Such microenvironmental plasticity defines in part the robustness of a trait. In the evolution of complex traits, tension between plasticity and its opposite, canalization, may be crucial for rapid evolution, adaptation, and the emergence of novelty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agrawal AA, Laforsch C, Tollrian R (1999) Transgenerational induction of defences in animals and plants. Nature 401:60–63

    Article  CAS  Google Scholar 

  • Ehrenreich IM, Pfennig DW (2016) Genetic assimilation: a review of its potential proximate causes and evolutionary consequences. Ann Bot 117:769–779

    Article  CAS  PubMed  Google Scholar 

  • Fusco G, Minelli A (2010) Phenotypic plasticity in development and evolution: facts and concepts. Philos Trans R Soc Lond Ser B Biol Sci 365:547–556

    Article  Google Scholar 

  • Galton F (1894) Natural inheritance. Macmillan and Company, New York

    Book  Google Scholar 

  • Geiler-Samerotte KA, Zhu YO, Goulet BE, Hall DW, Siegal ML (2016) Selection transforms the landscape of genetic variation interacting with Hsp90. PLoS Biol 14:e2000465

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson G, Hogness DS (1996) Effect of polymorphism in the Drosophila regulatory gene Ultrabithorax on homeotic stability. Science 271:200–203

    Article  CAS  PubMed  Google Scholar 

  • Hermisson J, Wagner GP (2004) The population genetic theory of hidden variation and genetic robustness. Genetics 168:2271–2284

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawecki TJ (1994) Accumulation of deleterious mutations and the evolutionary cost of being a generalist. Am Nat 144:833–838

    Article  Google Scholar 

  • Leichty AR, Pfennig DW, Jones CD, Pfennig KS (2012) Relaxed genetic constraint is ancestral to the evolution of phenotypic plasticity. Integr Comp Biol 52:16–30

    Article  PubMed  PubMed Central  Google Scholar 

  • Levis NA, Pfennig DW (2016) Evaluating ‘plasticity-first’ evolution in nature: key criteria and empirical approaches. Trends Ecol Evol 31:563–574

    Article  PubMed  Google Scholar 

  • Levis NA, Pfennig DW (2017) Phenotypic plasticity. In: Pfennig K (ed) Oxford bibliographies in evolutionary biology. Oxford University Press, New York

    Google Scholar 

  • Masel J, Siegal ML (2009) Robustness: mechanisms and consequences. Trends Genet 25:395–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moczek AP et al (2011) The role of developmental plasticity in evolutionary innovation. Proc Biol Sci 278:2705–2713

    Article  PubMed  PubMed Central  Google Scholar 

  • Morgante F, Sorensen P, Sorensen DA, Maltecca C, Mackay TF (2015) Genetic architecture of micro-environmental plasticity in Drosophila melanogaster. Sci Rep 5:09785

    Article  CAS  Google Scholar 

  • Murren CJ et al (2015) Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115:293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nijhout HF (2003) Development and evolution of adaptive polyphenisms. Evol Dev 5:9–18

    Article  PubMed  Google Scholar 

  • Paaby AB, Gibson G (2016) Cryptic genetic variation in evolutionary developmental genetics. Biology 5(2):28

    Article  PubMed Central  Google Scholar 

  • Paaby AB, Rockman MV (2014) Cryptic genetic variation: evolution’s hidden substrate. Nat Rev Genet 15:247–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paaby AB, White AG, Riccardi DD, Gunsalus KC, Piano F, Rockman MV (2015) Wild worm embryogenesis harbors ubiquitous polygenic modifier variation. eLife 4:e09178

    Article  PubMed Central  Google Scholar 

  • Pigliucci M (2005) Evolution of phenotypic plasticity: where are we going now? Trends Ecol Evol 20:481–486

    Article  PubMed  Google Scholar 

  • Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336–342

    Article  CAS  PubMed  Google Scholar 

  • Schlichting CD, Pigliucci M (1998) Phenotypic evolution: a reaction norm perspective. Sinauer Associates Incorporated, Sunderland

    Google Scholar 

  • Simpson SJ, Sword GA, Lo N (2011) Polyphenism in insects. Curr Biol 21:R738–R749

    Article  CAS  PubMed  Google Scholar 

  • Stearns SC (1989) The evolutionary significance of phenotypic plasticity. Bioscience 39:436–445

    Article  Google Scholar 

  • Susoy V, Ragsdale EJ, Kanzaki N, Sommer RJ (2015) Rapid diversification associated with a macroevolutionary pulse of developmental plasticity. eLife 4:e05463

    Article  PubMed Central  Google Scholar 

  • True JR, Haag ES (2001) Developmental system drift and flexibility in evolutionary trajectories. Evol Dev 3:109–119

    Article  CAS  PubMed  Google Scholar 

  • Verster AJ, Ramani AK, McKay SJ, Fraser AG (2014) Comparative RNAi screens in C. elegans and C. briggsae reveal the impact of developmental system drift on gene function. PLoS Genet 10(2):e1004077

    Article  PubMed  PubMed Central  Google Scholar 

  • Waddington CH (1953) Genetic assimilation of an acquired character. Evolution 7:118–126

    Article  Google Scholar 

  • Waddington CH (1957) The strategy of the genes. George Allen and Unwin, London

    Google Scholar 

  • Wagner GP, Booth G, Bagheri-Chaichian H (1997) A population genetic theory of canalization. Evolution 51:329–347

    Article  PubMed  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalise B. Paaby .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Paaby, A.B., Testa, N.D. (2018). Developmental Plasticity and Evolution. In: Nuno de la Rosa, L., Müller, G. (eds) Evolutionary Developmental Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-33038-9_110-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33038-9_110-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33038-9

  • Online ISBN: 978-3-319-33038-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics