Skip to main content

Hearing Aid Signal Processing

  • Chapter
  • First Online:
Hearing Aids

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 56))

Abstract

This chapter reviews the general types of signal processing that are used in modern digital hearing aids. The focus is on concepts underlying the processing rather than on details of the implementation. The signal processing can be classified into three broad classes: (1) Processing to apply frequency- and level-dependent amplification to restore audibility and provide acceptable loudness, based on the hearing profile of the individual (usually the audiogram but sometimes taking into account the results of loudness scaling) and the preferences of the individual. Frequency lowering can be considered as an additional method for restoring the audibility of high-frequency sounds. (2) Sound cleaning, for example, partial removal of stationary noises or impulse sounds and reduction of acoustic feedback. Noise reduction may be achieved using both single-microphone and multiple-microphone algorithms, but only the latter have been shown to improve intelligibility. (3) Environment classification for automatically controlling the settings of a hearing aid in different listening situations. It is concluded that modern hearing aids can be effective in restoring audibility and providing acceptable loudness and listening comfort, but they are still of limited effectiveness in improving the intelligibility of speech in noisy situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, J. M. (2013). Individual variability in recognition of frequency-lowered speech. Seminars in Hearing, 34, 86–109.

    Article  Google Scholar 

  • ANSI. (2003). ANSI S3.22–2003, Specification of hearing aid characteristics. New York: American National Standards Institute.

    Google Scholar 

  • Bentler, R., Wu, Y. H., Kettel, J., & Hurtig, R. (2008). Digital noise reduction: Outcomes from laboratory and field studies. International Journal of Audiology, 47, 447–460.

    Article  PubMed  Google Scholar 

  • Bentler, R., Walker, E., McCreery, R., Arenas, R. M., & Roush, P. (2014). Nonlinear frequency compression in hearing aids: Impact on speech and language development. Ear and Hearing, 35, e143–152.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beutelmann, R., & Brand, T. (2006). Prediction of speech intelligibility in spatial noise and reverberation for normal-hearing and hearing-impaired listeners. The Journal of the Acoustical Society of America, 120, 331–342.

    Article  PubMed  Google Scholar 

  • Braida, L. D., Durlach, N. I., Lippmann, R. P., Hicks, B. L., Rabinowitz, W. M., & Reed, C. M. (1979). Hearing aids—a review of past research on linear amplification, amplitude compression, and frequency lowering. ASHA Monographs, 19, 1–114.

    PubMed  Google Scholar 

  • Chi, H.-F., Gao, S. X., Soli, S. D., & Alwan, A. (2003). Band-limited feedback cancellation with a modified filtered-X LMS algorithm for hearing aids. Speech Communication, 39, 147–161.

    Article  Google Scholar 

  • Ching, T. Y., Day, J., Zhang, V., Dillon, H., Van Buynder, P., et al. (2013). A randomized controlled trial of nonlinear frequency compression versus conventional processing in hearing aids: Speech and language of children at three years of age. International Journal of Audiology, 52(Suppl 2), S46–S54.

    Article  PubMed  Google Scholar 

  • Chung, K. (2004). Challenges and recent developments in hearing aids. Part II. Feedback and occlusion effect reduction strategies, laser shell manufacturing processes, and other signal processing technologies. Trends in Amplification, 8, 125–164.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung, K. (2012a). Comparisons of spectral characteristics of wind noise between omnidirectional and directional microphones. The Journal of the Acoustical Society of America, 131, 4508–4517.

    Article  PubMed  Google Scholar 

  • Chung, K. (2012b). Wind noise in hearing aids: I. Effect of wide dynamic range compression and modulation-based noise reduction. International Journal of Audiology, 51, 16–28.

    Google Scholar 

  • Chung, K., Mongeau, L., & McKibben, N. (2009). Wind noise in hearing aids with directional and omnidirectional microphones: Polar characteristics of behind-the-ear hearing aids. The Journal of the Acoustical Society of America, 125, 2243–2259.

    Article  PubMed  Google Scholar 

  • Chung, K., McKibben, N., & Mongeau, L. (2010). Wind noise in hearing aids with directional and omnidirectional microphones: Polar characteristics of custom-made hearing aids. The Journal of the Acoustical Society of America, 127, 2529–2542.

    Article  PubMed  Google Scholar 

  • Darwin, C. J., & Carlyon, R. P. (1995). Auditory grouping. In B. C. J. Moore (Ed.), Hearing (pp. 387–424). San Diego: Academic Press.

    Google Scholar 

  • Dickson, B., & Steele, B. R. (2010). Method and device for low delay processing. US Patent 7774396 B2. Application 7774396 B2.

    Google Scholar 

  • Dillon, H. (2012). Hearing aids, 2nd ed. Turramurra, Australia: Boomerang Press.

    Google Scholar 

  • Duquesnoy, A. J. (1983). Effect of a single interfering noise or speech source on the binaural sentence intelligibility of aged persons. The Journal of the Acoustical Society of America, 74, 739–743.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, B. (2007). The future of hearing aid technology. Trends in Amplification, 11, 31–45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elko, G. W. (2007). Reducing noise in audio systems. US Patent 7,171,008 B2.

    Google Scholar 

  • Elko, G. W., & Meyer, J. (2008). Microphone arrays. In J. Benesty, M. Sondhi, & Y. Huang (Eds.). Springer handbook of speech processing (pp. 1021–1042). Berlin: Springer-Verlag.

    Google Scholar 

  • Engebretson, A. M., Morley, R. E., & Popelka, G. R. (1985). Hearing aids, signal supplying apparatus, systems for compensating hearing deficiencies, and methods. US Patent 4548082.

    Google Scholar 

  • Fabry, D., & Tchorz, J. (2005). A hearing system that can bounce back from reverberation. The Hearing Review. http://www.hearingreview.com/2005/09/a-hearing-system-that-can-bounce-back-from-reverberation/ (Accessed January 13, 2016).

  • Fowler, E. P. (1936). A method for the early detection of otosclerosis. Archives of Otolaryngology, 24, 731–741.

    Article  Google Scholar 

  • Freed, D. J. (2008). Adaptive feedback cancellation in hearing aids with clipping in the feedback path. The Journal of the Acoustical Society of America, 123, 1618–1626.

    Article  PubMed  Google Scholar 

  • Freed, D. J., & Soli, S. D. (2006). An objective procedure for evaluation of adaptive antifeedback algorithms in hearing aids. Ear and Hearing, 27, 382–398.

    Article  PubMed  Google Scholar 

  • Freyman, R. L., Helfer, K. S., McCall, D. D., & Clifton, R. K. (1999). The role of perceived spatial separation in the unmasking of speech. The Journal of the Acoustical Society of America, 106, 3578–3588.

    Article  CAS  PubMed  Google Scholar 

  • Gatehouse, S., Naylor, G., & Elberling, C. (2006a). Linear and nonlinear hearing aid fittings—1. Patterns of benefit. International Journal of Audiology, 45, 130–152.

    Google Scholar 

  • Gatehouse, S., Naylor, G., & Elberling, C. (2006b). Linear and nonlinear hearing aid fittings—2. Patterns of candidature. International Journal of Audiology, 45, 153–171.

    Google Scholar 

  • Glasberg, B. R., & Moore, B. C. J. (1990). Derivation of auditory filter shapes from notched-noise data. Hearing Research, 47, 103–138.

    Article  CAS  PubMed  Google Scholar 

  • Glista, D., Scollie, S., Bagatto, M., Seewald, R., Parsa, V., & Johnson, A. (2009). Evaluation of nonlinear frequency compression: Clinical outcomes. International Journal of Audiology, 48, 632–644.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo, M., Jensen, S. H., & Jensen, J. (2013). Evaluation of state-of-the-art acoustic feedback cancellation systems in hearing aids. Journal of the Audio Engineering Society, 61, 125–137.

    Google Scholar 

  • Hamacher, V., Chalupper, J., Eggers, J., Fischer, E., Kornagel, U., et al. (2005). Signal processing in high-end hearing aids: State of the art, challenges, and future trends. EURASIP Journal on Applied Signal Processing, 18, 2915–2929.

    Article  Google Scholar 

  • Hamacher, V., Fischer, E., Kornagel, U., & Puder, H. (2006). Applications of adaptive signal processing methods in high-end hearing instruments. In E. Hänsler & G. Schmidt (Eds.), Topics in acoustic echo and noise control: Selected methods for the cancellation of acoustical echoes, the reduction of background noise, and speech processing (pp. 599–636). New York: Springer Science + Business Media.

    Google Scholar 

  • Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66, 51–83.

    Google Scholar 

  • Helfer, K. S., & Wilbur, L. A. (1990). Hearing loss, aging, and speech perception in reverberation and noise. Journal of Speech and Hearing Research, 33, 149–155.

    Article  CAS  PubMed  Google Scholar 

  • Hellgren, J. (2002). Analysis of feedback cancellation in hearing aids with filtered-X LMS and the direct method of closed loop identification. IEEE Transactions on Speech and Audio Processing, 10, 119–131.

    Article  Google Scholar 

  • Hellgren, J., Lunner, T., & Arlinger, S. (1999). System identification of feedback in hearing aids. The Journal of the Acoustical Society of America, 105, 3481–3496.

    Article  CAS  PubMed  Google Scholar 

  • Hopkins, K., Khanom, M., Dickinson, A. M., & Munro, K. J. (2014). Benefit from non-linear frequency compression hearing aids in a clinical setting: The effects of duration of experience and severity of high-frequency hearing loss. International Journal of Audiology, 53, 219–228.

    Article  PubMed  Google Scholar 

  • Hunag, Y., Benesty, J., & Chen, J. (2007). Deverberberation. In J. Benesty, M. Sondhi, & Y. Huang (Eds.), Springer handbook of speech processing (pp. 929–943). New York: Springer Science + Business Media.

    Google Scholar 

  • Jensen, N. S., Neher, T., Laugesen, S., Johannesson, R. B., & Kragelund, L. (2013). Laboratory and field study of the potential benefits of pinna cue-preserving hearing aids. Trends in Hearing, 17, 171–188.

    Article  PubMed  Google Scholar 

  • Joson, H. A., Asano, F., Suzuki, Y., & Sone, T. (1993). Adaptive feedback cancellation with frequency compression for hearing aids. The Journal of the Acoustical Society of America, 94, 3254–3258.

    Article  CAS  PubMed  Google Scholar 

  • Kates, J. M. (1995). Classification of background noises for hearing-aid applications. The Journal of the Acoustical Society of America, 97, 461–470.

    Article  CAS  PubMed  Google Scholar 

  • Kates, J. M. (1999). Constrained adaptation for feedback cancellation in hearing aids. The Journal of the Acoustical Society of America, 106, 1010–1019.

    Article  CAS  PubMed  Google Scholar 

  • Kates, J. M. (2001). Room reverberation effects in hearing aid feedback cancellation. The Journal of the Acoustical Society of America, 109, 367–378.

    Article  CAS  PubMed  Google Scholar 

  • Kates, J. M. (2005). Principles of digital dynamic-range compression. Trends in Amplification, 9, 45–76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kates, J. M. (2008). Digital hearing aids. San Diego: Plural.

    Google Scholar 

  • Kates, J. M., & Arehart, K. H. (2005). Multichannel dynamic-range compression using digital frequency warping. EURASIP Journal on Applied Signal Processing, 18, 3003–3014.

    Article  Google Scholar 

  • Keidser, G., Rohrseitz, K., Dillon, H., Hamacher, V., Carter, L., et al. (2006). The effect of multi-channel wide dynamic range compression, noise reduction, and the directional microphone on horizontal localization performance in hearing aid wearers. International Journal of Audiology, 45, 563–579.

    Article  PubMed  Google Scholar 

  • Kochkin, S. (2010a). MarkeTrak VIII: Consumer satisfaction with hearing aids is slowly increasing. Hearing Journal, 63, 19–20, 22, 24, 26, 28, 30–32.

    Google Scholar 

  • Kochkin, S. (2010b). MarkeTrak VIII: Mini-BTEs tap new market, users more satisfied. Hearing Journal, 63, 17–18, 20, 22, 24.

    Google Scholar 

  • Kopco, N., Best, V., & Carlile, S. (2010). Speech localization in a multitalker mixture. The Journal of the Acoustical Society of America, 127, 1450–1457.

    Article  PubMed  PubMed Central  Google Scholar 

  • Korhonen, P., Kuk, F., Lau, C., Keenan, D., Schumacher, J., & Nielsen, J. (2013). Effects of a transient noise reduction algorithm on speech understanding, subjective preference, and preferred gain. Journal of the American Academy of Audiology, 24, 845–858.

    Article  PubMed  Google Scholar 

  • Kuk, F., Keenan, D., Korhonen, P., & Lau, C. C. (2009). Efficacy of linear frequency transposition on consonant identification in quiet and in noise. Journal of the American Academy of Audiology, 20, 465–479.

    Article  PubMed  Google Scholar 

  • Kuk, F., Korhonen, P., Lau, C., Keenan, D., & Norgaard, M. (2013). Evaluation of a pinna compensation algorithm for sound localization and speech perception in noise. American Journal of Audiology, 22, 84–93.

    Article  PubMed  Google Scholar 

  • Latzel, M. (2013). Concepts for binaural processing in hearing aids. Hearing Review, 20, 34, 36, 41.

    Google Scholar 

  • Latzel, M., & Appleton, J. (2013a). Evaluation of a binaural speech in wind feature, Part 1: Verification in the laboratory. Hearing Review, 20, 32–34.

    Google Scholar 

  • Latzel, M., & Appleton, J. (2013b). Evaluation of a binaural speech in wind feature, Part 2: Validation and real-life benefit. Hearing Review, 20, 36, 38, 43–44.

    Google Scholar 

  • Laurence, R. F., Moore, B. C. J., & Glasberg, B. R. (1983). A comparison of behind-the-ear high-fidelity linear aids and two-channel compression hearing aids in the laboratory and in everyday life. British Journal of Audiology, 17, 31–48.

    Article  CAS  PubMed  Google Scholar 

  • Lebart, K., Boucher, J. M., & Denbigh, P. N. (2001). A new method based on spectral subtraction for dereverberation. Acta Acustica United with Acustica, 87, 359–366.

    Google Scholar 

  • Lindemann, E., & Worrall, T. L. (2000). Continuous frequency dynamic range audio compressor. US Patent 6097824. Application 08/870426.

    Google Scholar 

  • Loizou, P. C. (2013). Speech enhancement: Theory and practice, 2nd ed. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Löllmann, W., & Vary, P. (2008). Low delay filter-banks for speech and audio processing. In E. Hänsler & G. Schmidt (Eds.), Speech and audio processing in adverse environments (pp. 13–62). Berlin: Springer-Verlag.

    Google Scholar 

  • Lunner, T., & Sundewall-Thoren, E. (2007). Interactions between cognition, compression, and listening conditions: Effects on speech-in-noise performance in a two-channel hearing aid. Journal of the American Academy of Audiology, 18, 604–617.

    Article  PubMed  Google Scholar 

  • Magnusson, L., Claesson, A., Persson, M., & Tengstrand, T. (2013). Speech recognition in noise using bilateral open-fit hearing aids: The limited benefit of directional microphones and noise reduction. International Journal of Audiology, 52, 29–36.

    Article  PubMed  Google Scholar 

  • Miskolczy-Fodor, F. (1960). Relation between loudness and duration of tonal pulses. III. Response in cases of abnormal loudness function. The Journal of the Acoustical Society of America, 32, 486–492.

    Google Scholar 

  • Moore, B. C. J. (2007). Cochlear hearing loss: Physiological, psychological and technical Issues, 2nd ed. Chichester: John Wiley & Sons.

    Book  Google Scholar 

  • Moore, B. C. J., & Glasberg, B. R. (1988). A comparison of four methods of implementing automatic gain control (AGC) in hearing aids. British Journal of Audiology, 22, 93–104.

    Article  CAS  PubMed  Google Scholar 

  • Moore, B. C. J., Wojtczak, M., & Vickers, D. A. (1996). Effect of loudness recruitment on the perception of amplitude modulation. The Journal of the Acoustical Society of America, 100, 481–489.

    Article  Google Scholar 

  • Moore, B. C. J., Peters, R. W., & Stone, M. A. (1999). Benefits of linear amplification and multi-channel compression for speech comprehension in backgrounds with spectral and temporal dips. The Journal of the Acoustical Society of America, 105, 400–411.

    Article  CAS  PubMed  Google Scholar 

  • Moore, B. C. J., Stone, M. A., & Alcántara, J. I. (2001). Comparison of the electroacoustic characteristics of five hearing aids. British Journal of Audiology, 35, 307–325.

    Article  CAS  PubMed  Google Scholar 

  • Moore, B. C. J., Füllgrabe, C., & Stone, M. A. (2011). Determination of preferred parameters for multi-channel compression using individually fitted simulated hearing aids and paired comparisons. Ear and Hearing, 32, 556–568.

    Article  PubMed  Google Scholar 

  • Moore, B. C. J., Kolarik, A., Stone, M. A., & Lee, Y.-W. (2016). Evaluation of a method for enhancing interaural level differences at low frequencies. The Journal of the Acoustical Society of America (in press).

    Google Scholar 

  • Morgan, S., & Raspet, R. (1992). Investigation of the mechanisms of low-frequency wind noise generation outdoors. The Journal of the Acoustical Society of America, 92, 1180–1183.

    Article  Google Scholar 

  • Nordqvist, P., & Leijon, A. (2004). An efficient robust sound classification algorithm for hearing aids. The Journal of the Acoustical Society of America, 115, 3033–3041.

    Article  PubMed  Google Scholar 

  • Petersen, K. S., Bogason, G., Kjems, U., & Elmedyb, B. (2008). Device and method for detecting wind noise. US Patent 7,340,068 B2.

    Google Scholar 

  • Picou, E. M., Aspell, E., & Ricketts, T. A. (2014). Potential benefits and limitations of three types of directional processing in hearing aids. Ear and Hearing, 35, 339–352.

    Article  PubMed  Google Scholar 

  • Picou, E. M., Marcrum, S. C., & Ricketts, T. A. (2015). Evaluation of the effects of nonlinear frequency compression on speech recognition and sound quality for adults with mild to moderate hearing loss. International Journal of Audiology, 54, 162–169.

    Article  PubMed  Google Scholar 

  • Plomp, R. (1988). The negative effect of amplitude compression in multichannel hearing aids in the light of the modulation-transfer function. The Journal of the Acoustical Society of America, 83, 2322–2327.

    Article  CAS  PubMed  Google Scholar 

  • Ricketts, T., Johnson, E., & Federman, J. (2008). Individual differences within and across feedback suppression hearing aids. The Journal of the American Academy of Audiology, 19, 748–757.

    Article  PubMed  Google Scholar 

  • Ricketts, T. A. (2001). Directional hearing aids. Trends in Amplification, 5, 139–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricketts, T. A., & Hornsby, B. W. (2003). Distance and reverberation effects on directional benefit. Ear and Hearing, 24, 472–484.

    Article  PubMed  Google Scholar 

  • Ricketts, T. A., & Hornsby, B. W. (2005). Sound quality measures for speech in noise through a commercial hearing aid implementing digital noise reduction. Journal of the American Academy of Audiology, 16, 270–277.

    Article  PubMed  Google Scholar 

  • Robinson, C. E., & Huntington, D. A. (1973). The intelligibility of speech processed by delayed long-term averaged compression amplification. The Journal of the Acoustical Society of America, 54, 314.

    Google Scholar 

  • Robinson, J., Baer, T., & Moore, B. C. J. (2007). Using transposition to improve consonant discrimination and detection for listeners with severe high-frequency hearing loss. International Journal of Audiology, 46, 293–308.

    Article  PubMed  Google Scholar 

  • Ryan, J., & Tewari, S. (2009). A digital signal processor for musicians and audiophiles. Hearing Reviews, 16, 38–41.

    Google Scholar 

  • Sarampalis, A., Kalluri, S., Edwards, B. W., & Hafter, E. R. (2009). Objective measures of listening effort: Effects of background noise and noise reduction. Journal of Speech, Language, and Hearing Research, 52, 1230–1240.

    Article  PubMed  Google Scholar 

  • Schroeder, M. R., & Atal, B. S. (1985). Code-excited linear prediction (CELP): High-quality speech at very low bit rates. In ICASSP '85 (pp. 937–940). Tampa, FL: IEEE.

    Google Scholar 

  • Simpson, A. (2009). Frequency-lowering devices for managing high-frequency hearing loss: A review. Trends in Amplification, 13, 87–106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simpson, A., Hersbach, A. A., & McDermott, H. J. (2005a). Improvements in speech perception with an experimental nonlinear frequency compression hearing device. International Journal of Audiology, 44, 281–292.

    Article  PubMed  Google Scholar 

  • Simpson, A., McDermott, H. J., & Dowell, R. C. (2005b). Benefits of audibility for listeners with severe high-frequency hearing loss. Hearing Research, 210, 42–52.

    Article  PubMed  Google Scholar 

  • Simpson, A., Hersbach, A. A., & McDermott, H. J. (2006). Frequency-compression outcomes in listeners with steeply sloping audiograms. International Journal of Audiology, 45, 619–629.

    Article  PubMed  Google Scholar 

  • Souza, P. E. (2002). Effects of compression on speech acoustics, intelligibility, and sound quality. Trends in Amplification, 6, 131–165.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spriet, A., Proudler, I., Moonen, M., & Wouters, J. (2005). Adaptive feedback cancellation in hearing aids with linear prediction of the desired signal. IEEE Transactions on Signal Processing, 53, 3749–3763.

    Article  Google Scholar 

  • Spriet, A., Moonen, M., & Wouters, J. (2010). Evaluation of feedback reduction techniques in hearing aids based on physical performance measures. The Journal of the Acoustical Society of America, 128, 1245–1261.

    Article  PubMed  Google Scholar 

  • Stinson, M. R., & Daigle, G. A. (2004). Effect of handset proximity on hearing aid feedback. The Journal of the Acoustical Society of America, 115, 1147–1156.

    Article  PubMed  Google Scholar 

  • Stone, M. A., & Moore, B. C. J. (1992). Syllabic compression: Effective compression ratios for signals modulated at different rates. British Journal of Audiology, 26, 351–361.

    Article  CAS  PubMed  Google Scholar 

  • Stone, M. A., & Moore, B. C. J. (1999). Tolerable hearing-aid delays. I. Estimation of limits imposed by the auditory path alone using simulated hearing losses. Ear and Hearing, 20, 182–192.

    Article  CAS  PubMed  Google Scholar 

  • Stone, M. A., & Moore, B. C. J. (2003). Effect of the speed of a single-channel dynamic range compressor on intelligibility in a competing speech task. The Journal of the Acoustical Society of America, 114, 1023–1034.

    Article  PubMed  Google Scholar 

  • Stone, M. A., & Moore, B. C. J. (2004). Side effects of fast-acting dynamic range compression that affect intelligibility in a competing speech task. The Journal of the Acoustical Society of America, 116, 2311–2323.

    Article  PubMed  Google Scholar 

  • Stone, M. A., & Moore, B. C. J. (2007). Quantifying the effects of fast-acting compression on the envelope of speech. The Journal of the Acoustical Society of America, 121, 1654–1664.

    Article  PubMed  Google Scholar 

  • Stone, M. A., Moore, B. C. J., Alcántara, J. I., & Glasberg, B. R. (1999). Comparison of different forms of compression using wearable digital hearing aids. The Journal of the Acoustical Society of America, 106, 3603–3619.

    Article  CAS  PubMed  Google Scholar 

  • Stone, M. A., Moore, B. C. J., Meisenbacher, K., & Derleth, R. P. (2008). Tolerable hearing-aid delays. V. Estimation of limits for open canal fittings. Ear and Hearing, 29, 601–617.

    Article  PubMed  Google Scholar 

  • Van den Bogaert, T., Klasen, T. J., Moonen, M., Van Deun, L., & Wouters, J. (2006). Horizontal localization with bilateral hearing aids: Without is better than with. The Journal of the Acoustical Society of America, 119, 515–526.

    Article  PubMed  Google Scholar 

  • Van den Bogaert, T., Carette, E., & Wouters, J. (2011). Sound source localization using hearing aids with microphones placed behind-the-ear, in-the-canal, and in-the-pinna. International Journal of Audiology, 50, 164–176.

    Article  PubMed  Google Scholar 

  • Verschuure, J., Maas, A. J. J., Stikvoort, E., de Jong, R. M., Goedegebure, A., & Dreschler, W. A. (1996). Compression and its effect on the speech signal. Ear and Hearing, 17, 162–175.

    Article  CAS  PubMed  Google Scholar 

  • Widrow, B., & Luo, F.-L. (2003). Microphone arrays for hearing aids: An overview. Speech Communication, 39, 139–146.

    Article  Google Scholar 

  • Widrow, B., McCool, J. M., Larimore, M. G., & Johnson, C. R. (1976). Stationary and nonstationary learning characteristics of the LMS adaptive filter. Proceedings of the IEEE, 64, 1151–1162.

    Google Scholar 

  • Wiggins, I. M., & Seeber, B. U. (2013). Linking dynamic-range compression across the ears can improve speech intelligibility in spatially separated noise. The Journal of the Acoustical Society of America, 133, 1004–1016.

    Article  PubMed  Google Scholar 

  • Wolfe, J., John, A., Schafer, E., Nyffeler, M., Boretzki, M., & Caraway, T. (2010). Evaluation of nonlinear frequency compression for school-age children with moderate to moderately severe hearing loss. Journal of the American Academy of Audiology, 21, 618–628.

    Article  PubMed  Google Scholar 

  • Wolfe, J., John, A., Schafer, E., Hudson, M., Boretzki, M., et al. (2015). Evaluation of wideband frequency responses and non-linear frequency compression for children with mild to moderate high-frequency hearing loss. International Journal of Audiology, 54, 170–181.

    Article  PubMed  Google Scholar 

  • Wu, Y. H., Stangl, E., Bentler, R. A., & Stanziola, R. W. (2013). The effect of hearing aid technologies on listening in an automobile. Journal of the American Academy of Audiology, 24, 474–485.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zakis, J. A. (2011). Wind noise at microphones within and across hearing aids at wind speeds below and above microphone saturation. The Journal of the Acoustical Society of America, 129, 3897–3907.

    Article  PubMed  Google Scholar 

  • Zakis, J. A. (2013). Method and apparatus for wind noise detection. Patent Application WO 2013091021 A1.

    Google Scholar 

  • Zakis, J. A., & Tan, C. M. (2014). Robust wind noise detection. In IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 3655–3659). Florence, Italy: IEEE.

    Google Scholar 

  • Zakis, J. A., Fulton, B., & Steele, B. R. (2012). Preferred delay and phase-frequency response of open-canal hearing aids with music at low insertion gain. International Journal of Audiology, 51, 906–913.

    Article  PubMed  Google Scholar 

  • Zhang, V. W., Ching, T. Y., Van Buynder, P., Hou, S., Flynn, C., et al. (2014). Aided cortical response, speech intelligibility, consonant perception and functional performance of young children using conventional amplification or nonlinear frequency compression. International Journal of Pediatric Otorhinolaryngology, 78, 1692–1700.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

Stefan Launer is an employee of the hearing health care manufacturer Sonova.Justin A. Zakis declares that he has no conflict of interest.Brian C.J. Moore has conducted research projects in collaboration with (and partly funded by) Phonak, Starkey, Siemens, Oticon, GNReseound, Bernafon, Hansaton, and Earlens. Brian C.J. Moore acts as a consultant for Earlens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Launer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Launer, S., Zakis, J.A., Moore, B.C.J. (2016). Hearing Aid Signal Processing. In: Popelka, G., Moore, B., Fay, R., Popper, A. (eds) Hearing Aids. Springer Handbook of Auditory Research, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-319-33036-5_4

Download citation

Publish with us

Policies and ethics