Skip to main content

What is so Special About Marine Microorganisms? Introduction to the Marine Microbiome—From Diversity to Biotechnological Potential

  • Chapter
  • First Online:
The Marine Microbiome

Abstract

Marine microscopic life varies from single-celled organisms, simple multicellular, to symbiotic microorganisms encompassing all three domains of life: Bacteria, Archaea and Eukarya as well as biologically active entities such as viruses and viroids. Together they form the Ocean’s “microbiome”. Over billions of years of evolution this microbiome developed a plethora of adaptations and lifestyles and participates in the fluxes of virtually all chemical elements. The importance of the marine microbiome for human society and for the functioning of our living planet is not disputed. In this introductory chapter we bring to your attention some of the most important features of the marine microbiome and try to answer the question what distinguishes it from other microbial systems. Our main goal is to urge the reader to find more information about the taxonomic and functional diversity by exploring the specific chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alldredge AL, Cole JJ, Caron DA (1986) Production of heterotrophic bacteria inhabiting macroscopic organic aggregates (marine snow) from surface waters. Limnol Oceanogr 31:68–78

    Article  Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. National Oceanic and Atmospheric Administration (NOAA) Technical Memorandum NESDIS NGDC-24, p 19

    Google Scholar 

  • Arrigo KR (2005) Marine microorganisms and global nutrient cycles. Nature 437:349–355

    Article  CAS  PubMed  Google Scholar 

  • Arrigo KR, Robinson DH, Worthen DL, Robert B. Dunbar RB, DiTullio GR, van Woert M, Lizotte MP (1999) Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283:365–367

    Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Bolhuis H, Cretoiu MS, Stal LJ (2014) Molecular ecology of microbial mats. FEMS Microbiol Ecol 90:335–350

    CAS  PubMed  Google Scholar 

  • Brown RD, Mote W (2009) The response of northern hemisphere snow cover to a changing climate. J Clim 22:2124–2145

    Article  Google Scholar 

  • Cai F, Axen SD, Kerfeld CA (2013) Evidence for the widespread distribution of CRISPR-Cas system in the phylum cyanobacteria. RNA Biol 10(5):687–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caron DA (1987) Grazing of attached bacteria by heterotrophic microflagellates. Microb Ecol 13:203–218

    Article  CAS  PubMed  Google Scholar 

  • Cartwright DE (2000) Tides: a scientific history. Cambridge University Press, p 243

    Google Scholar 

  • Charette MA, Smith WHF (2010) The volume of Earth’s ocean. Oceanography 23(2):104–106

    Article  Google Scholar 

  • Comte J, Lindstrom ES, Eiler A, Langenheder S (2014) Can marine bacteria be recruited from freshwater sources and the air? ISME J 8:2423–2430

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Hondt S, Inagaki F, Zarikian CA, Abrams LJ, Dubois N, Engelhardt T, Evans H, Ferdelman T, Gribsholt B, Harris RN, Hoppie BW et al (2015) Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments. Nat Geosci 8:299–304

    Article  Google Scholar 

  • Daffonchio D, Borin S, Brusa T, Brusetti L, van der Wielen PWJJ, Bolhuis H, Yakimov MM, D’Auria G, Giuliano L et al (2006) Stratified prokaryote network in the oxic–anoxic transition of a deep-sea halocline. Nature 440:203–207

    Article  CAS  PubMed  Google Scholar 

  • Debnath M, Paul AK, Bisen PS (2007) Natural bioactive compounds and biotechnological potential of marine bacteria. Curr Pharm Biotechnol 8:253–260

    Article  CAS  PubMed  Google Scholar 

  • Drinkwater KF (2006) The regime shift of the 1920s and 1930s in the North Atlantic. Prog Oceanogr 68:134–151

    Article  Google Scholar 

  • Dyurgerov MB, Meier MF (2005) Glaciers and the changing earth system: a 2004 snapshot. Occasional Paper No. 55, INSTAAR, University of Colorado

    Google Scholar 

  • Elvert M, Greinert J, Suess E, Whiticar MJ (2000) Archaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern aleutian subduction zone. Org Geochem 31:1175–1187

    Article  CAS  Google Scholar 

  • European Commission Seventh Framework Programme—Marine Biotechnology ERA-NET (2014) Marine study in support of impact assessment work on blue biotechnology

    Google Scholar 

  • Falkowski PG (2000) Rationalizing elemental ratios in uni-cellular algae. J Phycol 36:3–6

    Article  CAS  Google Scholar 

  • Fanning KA (1989) Influence of atmospheric pollution on nutrient limitation in the ocean. Nature 339:460–463

    Article  CAS  Google Scholar 

  • Lauro FM & Bartlett DH (2008) Prokaryotic lifestyles in deep sea habitats. Extremophiles 12:15–25

    Article  PubMed  Google Scholar 

  • Feistel R, Weinreben S, Wolf H, Seitz S, Spitzer P, Adel B, Nausch G, Schneider B, Wright DG (2010) Density and absolute salinity of the Baltic Sea 2006–2009. Ocean Sci 6:3–24

    Article  CAS  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281:237–240

    Article  CAS  PubMed  Google Scholar 

  • Goffredi SK, Orphan VJ (2010) Bacterial community shifts in taxa and diversity in response to localized organic loading in the deep sea. Environ Microbiol 12:344–363

    Article  CAS  PubMed  Google Scholar 

  • Goldman JG, McCarthy JJ, Peavey DG (1979) Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279:210–215

    Article  CAS  Google Scholar 

  • Gould SJ (1996) Planet of the bacteria. Wash Post Horiz 119(344):H1

    Google Scholar 

  • Gruber N, Sarmiento JL (1997) Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem Cycles 11:235–266

    Article  CAS  Google Scholar 

  • Heinze C, Meyer S, Goris N, Anderson L, Steinfeldt R, Chang N, Le Quéré C, Bakker DCE (2015) The ocean carbon sink – impacts, vulnerabilities and challenges. Earth Syst Dynam 6:327–358

    Google Scholar 

  • Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A Neoproterozoic snowball Earth. Science 281:1342–1346

    Article  CAS  PubMed  Google Scholar 

  • Hou Z, Sket B, Fiser C, Li S (2011) Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proc Natl Acad Sci USA 108:14533–14538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsia CCW, Schmitz A, Lambertz M, Perry SF, Maina JN (2013) Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr Physiol 3:849–915

    PubMed  PubMed Central  Google Scholar 

  • Jiao N, Luo T, Zhang R, Yan W, Lin Y, Johnson ZI, Tian J, Yuan D, Yang Q, Zheng Q, Sun J, Hu D, Wang P (2014) Presence of Prochlorococcus in the aphotic waters of the western Pacific Ocean. Biogeosciences 11:2391–2400

    Article  Google Scholar 

  • Kennedy J, Marchesi J, Dobson A (2008) Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments. Microb Cell Fact 7:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim SK (2015) Handbook of marine biotechnology. Springer, Heidelberg, p 1512

    Google Scholar 

  • Klausmeier CA, Litchman E, Levin SA (2004) Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnol Oceanogr 49:1463–1470

    Article  Google Scholar 

  • Li WKW (1994) Primary production of prochlorophytes, cyanobacteria, and eukaryotic ultraphytoplankton—measurements from flow cytometric sorting. Limnol Oceanogr 39:169–175

    Article  CAS  Google Scholar 

  • Loladze1 I, Elser JJ (2011) The origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio. Ecol Lett 14:244–250

    Google Scholar 

  • Logares R, Bråte J, Bertilsson S, Clasen JL, Shalchian-Tabrizi K, Rengefors K (2009) Infrequent marine–freshwater transitions in the microbial world. Trends Microbiol 17:414–422

    Article  CAS  PubMed  Google Scholar 

  • Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci USA 104:11436–11440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLeod RA (1965) The question of the existence of specific marine bacteria. Bacteriol Rev 29:9–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacLeod RA, Matula TI (1962) Nutrition and metabolism of marine bacteria: XI. Some characteristics of the lytic phenomenon. Can J Microbiol 8:883–896

    Article  CAS  Google Scholar 

  • Martin W, Russell MJ (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans Roy Soc B 358:59–85

    Article  CAS  Google Scholar 

  • Martín-Cuadrado AB, Lopez-Garcia P, Alba JC, Moreira D, Monticelli L, Strittmatter A, Gottschalk G, Rodriguez-Valera F (2007) Metagenomics of the deep Mediterranean, a warm bathypelagic habitat. PLoS ONE 9:e914

    Article  Google Scholar 

  • McCarthy T, Rubisge B (2005) Story of Earth and life. University of the Witwatersrand, School of Geosciences (ed), p 70

    Google Scholar 

  • Middelburg JJ, Soetaert K, Herman PMJ, Heip CHR (1996) Denitrification in marine sediments: a model study. Global Biogeochem Cycles 10:661–673

    Article  CAS  Google Scholar 

  • Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, Boyd PW, Galbraith ED, Geider RJ, Guieu C, Jaccard SL, Jickells TD, La Roche J, Lenton TM et al (2013) Processes and patterns of oceanic nutrient limitation. Nat Geosci 6:701–710

    Article  CAS  Google Scholar 

  • Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ (2011) Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev 75:361–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pahlow M, Riebesell U (2000) Temporal trends in deep ocean Redfield ratios. Science 287:831–833

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Ghai R, Martín-Cuadrado AB, Rodríguez-Valera F, Chung WH, Kwon K et al (2014) Genomes of two new ammonia-oxidizing archaea enriched from deep marine sediments. PLoS ONE 9(5):e96449

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedrós-Alió C, Simó R (2002) Studying marine microorganisms from space. Int Microbiol 5:195–200

    Article  PubMed  Google Scholar 

  • Pinet PR (1996) Invitation to oceanography. West Publishing Company, St. Paul, pp 126, 134–135

    Google Scholar 

  • Post WM, Peng T-H, Emanuel WR, King AW, Dale VH, DeAngelis DL (1990) The global carbon cycle. Am Sci 78:310–326

    Google Scholar 

  • Prieur D, Erauso G, Jeanthon C (1995) Hyperthermophilic life at deep-sea hydrothermal vents. Planet Space Sci 43:115–122

    Article  CAS  PubMed  Google Scholar 

  • Redfield AC (1934) On the proportions of organic derivations in seawater and their relation to the composition of plankton. In Daniel RJ (ed) James Johnstone memorial volume. University Press of Liverpool, Liverpool, pp 176–192

    Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221

    CAS  Google Scholar 

  • Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea water. In: Hill MN (ed)  The sea. Interscience, New York, pp 26–77

    Google Scholar 

  • Rhodes ME, Payne WJ (1962) Further observations on effects of cations on enzyme induction in marine bacteria. Antonie van Leeuwenhoek. J Microbiol Serol 28:302–314

    CAS  Google Scholar 

  • Ridgwell A (2011) Evolution of the ocean’s biological pump. In: Proceedings of the national academy of sciences of the United States of America, vol 108, pp 16485–16486

    Google Scholar 

  • Ross D (1995) Introduction to oceanography. HarperCollins College Publishers, New York, pp 199–226, 339–343

    Google Scholar 

  • Røy H, Kallmeyer J, Adhikar RR, Pockalny R, Jørgensen BB, D’Hondt S (2012) Aerobic microbial respiration in 86-million-year-old deep-sea red clay. Science 336:922–925

    Article  PubMed  Google Scholar 

  • Santos-Gandelman JF, Giambiagi-deMarval M, Oelemann WM, Laport MS (2014) Biotechnological potential of sponge-associated bacteria. Curr Pharm Biotechnol 15:143–155

    Article  CAS  PubMed  Google Scholar 

  • Sardans J,  Rivas-Ubach A, Penuelas J (2012) The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemistry 111:1–39

    Google Scholar 

  • Sarmiento JL, Hughes TMC, Stouffer RJ, Manabe S (1998) Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393:245–249

    Article  CAS  Google Scholar 

  • Silver M (2015) Marine snow: a brief historical sketch. Limnol Oceanogr Bull 24:5–10

    Article  Google Scholar 

  • Smetacek V (2001) A watery arms race. Nature 411:745

    Article  CAS  PubMed  Google Scholar 

  • Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol Annu Rev 41:311–354

    Google Scholar 

  • Stal LJ, Zehr JP (2008) Cyanobacterial nitrogen fixation in the ocean: diversity, regulation, and ecology. In: Flores E, Herrero A (eds) The cyanobacteria: molecular biology, genomics and evolution. Caister Academic Publishers, Norfolk, pp 423–446

    Google Scholar 

  • Stanier RY (1941) Studies on marine agar digesting bacteria. J Bacteriol 42:527–559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stocker R (2012) Marine microbes see a sea of gradients. Science 338:628–633

    Article  CAS  PubMed  Google Scholar 

  • Tamames J, Abellán JJ, Pignatelli M, Camacho A, Moya A (2010) Environmental distribution of prokaryotic taxa. BMC Microbiol 10:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Thiele S, Fuchs BM, Amann R, Iversen MH (2014) Colonization in the photic zone and subsequent changes during sinking determines bacterial community composition in marine snow. Appl Environ Microbiol 81:1463–1471

    Article  PubMed Central  Google Scholar 

  • Thurman H, Burton E (2001) Introductory oceanography, 9th edn. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  • Trindade M, Van Zyl L, Navarro-Fernández J, Abd Elrazak A (2015) Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates. Front in Microbiol 6:890

    Google Scholar 

  • Turekian KK (1968) Oceans. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • Turner JT (2015) Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog Oceanogr 130:205–248

    Article  Google Scholar 

  • Tyrrel T (1999) The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400:525–531

    Article  Google Scholar 

  • van der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L et al (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123

    Article  PubMed  Google Scholar 

  • Wächtershäuser G (2006) From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Philos Trans Roy Soc B 361:1787–1808

    Article  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wietz M, Millán-Aguiñaga N, Jensen PR (2014) CRISPR-Cas systems in the marine actinomycete Salinispora: linkages with phage defense, microdiversity and biogeography. BMC Genom 25(15):936

    Article  Google Scholar 

  • Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ (2015) Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347:1257594

    Google Scholar 

  • Wu J, Gao W, Johnson RH, Zhang W, Meldrum DR (2013) Integrated metagenomic and metatranscriptomic analyses of microbial communities in the meso- and bathypelagic realm of North Pacific Ocean. Mar Drugs 11:3777–3801

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhao Z, Dai M, Jiao N, Herndl GJ (2014) Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea. Mol Ecol 23:2260–2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zobell CE, Rittenberg SC (1938) The occurrence and characteristics of chitinoclastic bacteria in the sea. J Bacteriol 35:275–287

    Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 311975. This publication reflects the views only of the authors, and the European Union cannot be held responsible for any use which may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henk Bolhuis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bolhuis, H., Cretoiu, M.S. (2016). What is so Special About Marine Microorganisms? Introduction to the Marine Microbiome—From Diversity to Biotechnological Potential. In: Stal, L., Cretoiu, M. (eds) The Marine Microbiome. Springer, Cham. https://doi.org/10.1007/978-3-319-33000-6_1

Download citation

Publish with us

Policies and ethics