Skip to main content

Epistasis

  • Reference work entry
  • First Online:
Evolutionary Developmental Biology

Abstract

Epistasis is broadly synonymous with gene interaction, referring to cases in which the effects of changing a gene depend on the state of other genes. Beyond this, the term has acquired a number of different technical and nontechnical meanings, which has led to confusion and misunderstanding in communication across disciplines. Clear communication about epistasis is particularly pertinent in evolutionary developmental biology both because of the relevance of epistasis to some of its key research questions such as the evolution of evolvability and canalization, and because evo-devo acts as a trading zone for cross-disciplinary communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Álvarez-Castro JM, Carlborg Ö (2007) A unified model for functional and statistical epistasis and its application in quantitative trait loci analysis. Genetics 176:1151–1167

    Article  Google Scholar 

  • Barton NH, Turelli M (2004) Effects of genetic drift on variance components under a general model of epistasis. Evolution 58:2111–2132

    Article  CAS  Google Scholar 

  • Carter AJR, Hermisson J, Hansen TF (2005) The role of epistatic gene interactions in the response to selection and the evolution of evolvability. Theor Popul Biol 68:179–196

    Article  Google Scholar 

  • Cheverud JM, Routman EJ (1995) Epistasis and its contribution to genetic variance components. Genetics 139:1455–1461

    Article  CAS  Google Scholar 

  • Drees BL, Thorsson V, Carter GW, Rives AW, Raymond MZ, Avila-Campillo I, Shannon P, Galitski T (2005) Derivation of genetic interaction networks from quantitative phenotype data. Genome Biol 6:R38

    Article  Google Scholar 

  • Flatt T (2005) The evolutionary genetics of canalization. Q Rev Biol 80:287–316

    Article  Google Scholar 

  • Hansen TF (2013) Why epistasis is important for selection and adaptation. Evolution 67:3501–3511

    Article  Google Scholar 

  • Hansen TF (2015) Measuring gene interaction. In: Moore JH, Williams S (eds) Epistasis: methods and protocols. Methods in molecular biology. Springer, New York, pp 115–142

    Google Scholar 

  • Hansen TF, Wagner GP (2001) Modeling genetic architecture: a multilinear theory of gene interaction. Theor Popul Biol 59:61–86

    Article  CAS  Google Scholar 

  • Hermisson J, Wagner GP (2004) The population genetic theory of hidden variation and genetic robustness. Genetics 168:2271–2284

    Article  Google Scholar 

  • Huang W, Richards S, Carbone MA, Zhu D, Anholt RRH, Ayroles JF, Duncan L, Jordan KW, Lawrence F, Magwire MM, Warner CB, Blankenburg K, Han Y, Javaid M, Jayaseelan J, Jhangiani SN, Muzny D, Ongeri F, Perales L, Wu Y-Q, Zhang Y, Zou X, Stone EA, Gibbs RA, Mackay TFC (2013) Epistasis dominates the genetic architecture of Drosophila quantitative traits. Proc Natl Acad Sci U S A 109:15553–15559

    Article  Google Scholar 

  • Le Rouzic A (2014) Estimating directional epistasis. Front Genet 5:198

    Article  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative characters. Sinauer, Sunderland

    Google Scholar 

  • Malmberg RL, Mauricio R (2005) QTL-based evidence for the role of epistasis in evolution. Genet Res 86:89–95

    Article  CAS  Google Scholar 

  • Pavlicev M, Cheverud JM (2015) Constraints evolve: context dependency of gene effects allows evolution of pleiotropy. Annu Rev Ecol Evol Syst 46:413–434

    Article  Google Scholar 

  • Perfeito L, Sousa A, Bataillon T, Gordo I (2014) Rates of fitness decline and rebound suggest pervasive epistasis. Evolution 68:150–163

    Article  CAS  Google Scholar 

  • Rice SH (1998) The evolution of canalization and the breaking of von Baer’s laws: modeling the evolution of development with epistasis. Evolution 52:647–656

    Article  Google Scholar 

  • Wagner GP (2010) The measurement theory of fitness. Evolution 64:1358–1376

    PubMed  Google Scholar 

  • Weinreich DM, Watson RA, Chao L (2005) Sign epistasis and genetic constraint on evolutionary trajectories. Evolution 59:1165–1174

    CAS  PubMed  Google Scholar 

  • Whitlock MC, Phillips PC, Moore FB-G, Tonsor SJ (1995) Multiple fitness peaks and epistasis. Annu Rev Ecol Syst 26:601–629

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas F. Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hansen, T.F. (2021). Epistasis. In: Nuño de la Rosa, L., Müller, G.B. (eds) Evolutionary Developmental Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-32979-6_53

Download citation

Publish with us

Policies and ethics