Skip to main content

Bacterial Cell Envelopes: Composition, Architecture, and Origin

  • Reference work entry
  • First Online:
Handbook of Electroporation

Abstract

The bacterial envelope is a complex layered structure, whose primary function is to protect the cell from the environment. The Gram-staining procedure has been a fundamental method to classify the bacteria for more than 100 years. It was based on the effect of the structure and composition of the bacterial envelope on the staining procedure. It has made it possible to classify the bacteria in two main categories: the Gram-positive, which bind the Gram stain, and Gram-negative bacteria, which do not. Currently, the prokaryotes are classified in 30 phyla of Bacteria and in 5 phyla of Archaea. This classification does not consider the Gram-staining properties which was an excessive simplification. The growing amount of data concerning the genomic sequences of bacteria has significantly amended the view of the bacterial phylogeny. In addition, the access to the genetics of the biogenesis of the cell envelope has also allowed envisioning the bacterial Tree of Life in a different way. The bacterial envelopes are now defined with the number of membranes they contain: the cells are either diderms or monoderms. In addition, the presence or the absence of lipopolysaccharides (LPS) in the diderm envelopes is also a fundamental criterion. This chapter is an overview of current knowledge about the composition and architecture of bacterial envelopes in light of recent data showing that the diversity of structures allows reaching the same main objective, the survival and the protection of the bacterium from its environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albers SV, Meyer BH (2011) The archaeal cell envelope. Nat Rev Microbiol 9:414–426

    Article  Google Scholar 

  • Beveridge T (2001) Use of the gram stain in microbiology. Biotech Histochem 76:111–118

    Article  Google Scholar 

  • Braun V (1975) Covalent lipoprotein from the outer membrane of Escherichia coli. Biochim Biophys Acta 415:335–377

    Article  Google Scholar 

  • Brosig A, Nesper J, Boos W, Welte W, Diederichs K (2009) Crystal structure of a major outer membrane protein from Thermus thermophilus HB27. J Mol Biol 385:1445–1455

    Article  Google Scholar 

  • Brown S, Santa Maria JP Jr, Walker S (2013) Wall teichoic acids of gram-positive bacteria. Annu Rev Microbiol 67:313–336

    Article  Google Scholar 

  • Carel C, Nukdee K, Cantaloube S, Bonne M, Diagne CT, Laval F, Daffe M, Zerbib D (2014) Mycobacterium tuberculosis proteins involved in mycolic acid synthesis and transport localize dynamically to the old growing pole and septum. PLoS One 9, e97148

    Article  Google Scholar 

  • Cavalier-Smith T (2006) Rooting the tree of life by transition analyses. Biol Direct 1:19

    Article  Google Scholar 

  • Cavalier-Smith T (2010) Deep phylogeny, ancestral groups and the four ages of life. Philos Trans R Soc Lond B Biol Sci 365:111–132

    Article  Google Scholar 

  • Chambers HF (2003) Solving staphylococcal resistance to beta-lactams. Trends Microbiol 11:145–148

    Article  Google Scholar 

  • Chopra I, Storey C, Falla TJ, Pearce JH (1998) Antibiotics, peptidoglycan synthesis and genomics: the chlamydial anomaly revisited. Microbiology 144(Pt 10):2673–2678

    Article  Google Scholar 

  • Daffé M, Crick DC, Jackson M (2014) Genetics of capsular polysaccharides and cell envelope (glyco)lipids. Microbiol Spectr 2

    Google Scholar 

  • Dramsi S, Magnet S, Davison S, Arthur M (2008) Covalent attachment of proteins to peptidoglycan. FEMS Microbiol Rev 32:307–320

    Article  Google Scholar 

  • Dufresne K, Paradis-Bleau C (2015) Biology and assembly of the bacterial envelope. Adv Exp Med Biol 883:41–76

    Article  Google Scholar 

  • Forterre P (2015) The universal tree of life: an update. Front Microbiol 6:717

    Article  Google Scholar 

  • Fu LM, Fu-Liu CS (2002) Is Mycobacterium tuberculosis a closer relative to Gram-positive or Gram–negative bacterial pathogens? Tuberculosis 82:85–90

    Article  Google Scholar 

  • Gupta RS (1998) What are archaebacteria: life’s third domain or monoderm prokaryotes related to Gram-positive bacteria? A new proposal for the classification of prokaryotic organisms. Mol Microbiol 29:695–707

    Article  Google Scholar 

  • Gupta RS (2011) Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie Van Leeuwenhoek 100:171–182

    Article  Google Scholar 

  • Holtje JV (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62:181–203

    Google Scholar 

  • Jankute M, Cox JA, Harrison J, Besra GS (2015) Assembly of the mycobacterial cell wall. Annu Rev Microbiol 69:405–423

    Article  Google Scholar 

  • Jordan S, Hutchings MI, Mascher T (2008) Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev 32:107–146

    Article  Google Scholar 

  • Klebba PE (2005) The porinologist. J Bacteriol 187:8232–8236

    Article  Google Scholar 

  • Lake JA (2009) Evidence for an early prokaryotic endosymbiosis. Nature 460:967–971

    Article  Google Scholar 

  • Lugtenberg EJ, Peters R (1976) Distribution of lipids in cytoplasmic and outer membranes of Escherichia coli K12. Biochim Biophys Acta 441:38–47

    Article  Google Scholar 

  • Lyu ZX, Zhao XS (2015) Periplasmic quality control in biogenesis of outer membrane proteins. Biochem Soc Trans 43:133–138

    Article  Google Scholar 

  • Marrakchi H, Laneelle MA, Daffe M (2014) Mycolic acids: structures, biosynthesis, and beyond. Chem Biol 21:67–85

    Article  Google Scholar 

  • Meroueh SO, Bencze KZ, Hesek D, Lee M, Fisher JF, Stemmler TL, Mobashery S (2006) Three-dimensional structure of the bacterial cell wall peptidoglycan. Proc Natl Acad Sci U S A 103:4404–4409

    Article  Google Scholar 

  • Mogensen JE, Otzen DE (2005) Interactions between folding factors and bacterial outer membrane proteins. Mol Microbiol 57:326–346

    Article  Google Scholar 

  • Mullineaux CW, Nenninger A, Ray N, Robinson C (2006) Diffusion of green fluorescent protein in three cell environments in Escherichia coli. J Bacteriol 188:3442–3448

    Article  Google Scholar 

  • Nakayama H, Kurokawa K, Lee BL (2012) Lipoproteins in bacteria: structures and biosynthetic pathways. FEBS J 279:4247–4268

    Article  Google Scholar 

  • Nataraj V, Varela C, Javid A, Singh A, Besra GS, Bhatt A (2015) Mycolic acids: deciphering and targeting the Achilles’ heel of the tubercle bacillus. Mol Microbiol 98:7–16

    Article  Google Scholar 

  • Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656

    Article  Google Scholar 

  • Pace NR (2009) Mapping the tree of life: progress and prospects. Microbiol Mol Biol Rev 73:565–576

    Article  Google Scholar 

  • Pace NR, Sapp J, Goldenfeld N (2012) Phylogeny and beyond: scientific, historical, and conceptual significance of the first tree of life. Proc Natl Acad Sci U S A 109:1011–1018

    Article  Google Scholar 

  • Pavkov-Keller T, Howorka S, Keller W (2011) The structure of bacterial S-layer proteins. Prog Mol Biol Transl Sci 103:73–130

    Article  Google Scholar 

  • Pillet F, Formosa-Dague C, Baaziz H, Dague E, Rols MP (2016) Cell wall as a target for bacteria inactivation by pulsed electric fields. Sci Rep 6:19778

    Article  Google Scholar 

  • Pink D, Moeller J, Quinn B, Jericho M, Beveridge T (2000) On the architecture of the gram-negative bacterial murein sacculus. J Bacteriol 182:5925–5930

    Article  Google Scholar 

  • Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    Article  Google Scholar 

  • Rothfuss H, Lara JC, Schmid AK, Lidstrom ME (2006) Involvement of the S-layer proteins Hpi and SlpA in the maintenance of cell envelope integrity in Deinococcus radiodurans R1. Microbiology 152:2779–2787

    Article  Google Scholar 

  • Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414

    Article  Google Scholar 

  • Sutcliffe IC (2010) A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol 18:464–470

    Article  Google Scholar 

  • Swoboda JG, Campbell J, Meredith TC, Walker S (2010) Wall teichoic acid function, biosynthesis, and inhibition. Chembiochem 11:35–45

    Article  Google Scholar 

  • Tamura A, Ohashi N, Urakami H, Miyamura S (1995) Classification of Rickettsia tsutsugamushi in a new genus, Orientia gen. nov., as Orientia tsutsugamushi comb. nov. Int J Syst Bacteriol 45:589–591

    Article  Google Scholar 

  • Taylor BL (1983) Role of proton motive force in sensory transduction in bacteria. Annu Rev Microbiol 37:551–573

    Article  Google Scholar 

  • Turner RD, Vollmer W, Foster SJ (2014) Different walls for rods and balls: the diversity of peptidoglycan. Mol Microbiol 91:862–874

    Article  Google Scholar 

  • van der Does C, Swaving J, van Klompenburg W, Driessen AJ (2000) Non-bilayer lipids stimulate the activity of the reconstituted bacterial protein translocase. J Biol Chem 275:2472–2478

    Article  Google Scholar 

  • Vandeputte-Rutten L, Kramer RA, Kroon J, Dekker N, Egmond MR, Gros P (2001) Crystal structure of the outer membrane protease OmpT from Escherichia coli suggests a novel catalytic site. EMBO J 20:5033–5039

    Article  Google Scholar 

  • Veyron-Churlet R, Guerrini O, Mourey L, Daffe M, Zerbib D (2004) Protein-protein interactions within the Fatty Acid Synthase-II system of Mycobacterium tuberculosis are essential for mycobacterial viability. Mol Microbiol 54:1161–1172

    Article  Google Scholar 

  • Vollmer W (2008) Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol Rev 32:287–306

    Article  Google Scholar 

  • Vollmer W, Seligman SJ (2010) Architecture of peptidoglycan: more data and more models. Trends Microbiol 18:59–66

    Article  Google Scholar 

  • Weidel W, Pelzer H (1964) Bagshaped macromolecules – a new outlook on bacterial cell walls. Adv Enzymol Relat Areas Mol Biol 26:193–232

    Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579

    Article  Google Scholar 

  • Zuber B, Chami M, Houssin C, Dubochet J, Griffiths G, Daffe M (2008) Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol 190:5672–5680

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Zerbib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Zerbib, D. (2017). Bacterial Cell Envelopes: Composition, Architecture, and Origin. In: Miklavčič, D. (eds) Handbook of Electroporation. Springer, Cham. https://doi.org/10.1007/978-3-319-32886-7_28

Download citation

Publish with us

Policies and ethics