Skip to main content

Selection and Application of Aptamers and Intramers

  • Chapter
  • First Online:
Protein Targeting Compounds

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 917))

Abstract

Aptamers are auspicious nucleic acid ligands for targeting different molecules, such as small molecules, peptides, proteins, or even whole living cells. They are short single-stranded DNA or RNA oligonucleotides, which can fold into complex three-dimensional structures and bind selectively their targets. Using the combinatorial chemistry process SELEX (Systematic Evolution of Ligands by EXponential Enrichment), target specific aptamers can be selected. These aptamers have a variety of application possibilities and can be used as sensors, diagnostic, imaging or therapeutic agents, and in the field of regenerative medicine for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  CAS  PubMed  Google Scholar 

  2. Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344(6265):467–468

    Article  CAS  PubMed  Google Scholar 

  3. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  CAS  PubMed  Google Scholar 

  4. Breaker RR (2004) Natural and engineered nucleic acids as tools to explore biology. Nature 432(7019):838–845

    Article  CAS  PubMed  Google Scholar 

  5. Schurer H et al (2001) Aptamers that bind to the antibiotic moenomycin A. Bioorg Med Chem 9(10):2557–2563

    Article  CAS  PubMed  Google Scholar 

  6. Mendonsa SD, Bowser MT (2005) In vitro selection of aptamers with affinity for neuropeptide Y using capillary electrophoresis. J Am Chem Soc 127(26):9382–9383

    Article  CAS  PubMed  Google Scholar 

  7. Green LS et al (1996) Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry 35(45):14413–14424

    Article  CAS  PubMed  Google Scholar 

  8. Hamula CL et al (2008) Selection of aptamers against live bacterial cells. Anal Chem 80(20):7812–7819

    Article  CAS  PubMed  Google Scholar 

  9. Wang J, Jiang H, Liu F (2000) In vitro selection of novel RNA ligands that bind human cytomegalovirus and block viral infection. RNA 6(4):571–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shangguan D et al (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A 103(32):11838–11843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tang Z et al (2009) Generating aptamers for recognition of virus-infected cells. Clin Chem 55(4):813–822

    Article  CAS  PubMed  Google Scholar 

  12. Nimjee SM, Rusconi CP, Sullenger BA (2005) Aptamers: an emerging class of therapeutics. Annu Rev Med 56:555–583

    Article  CAS  PubMed  Google Scholar 

  13. Famulok M, Blind M, Mayer G (2001) Intramers as promising new tools in functional proteomics. Chem Biol 8(10):931–939

    Article  CAS  PubMed  Google Scholar 

  14. Liu Y et al (2009) Aptamers selected against the unglycosylated EGFRvIII ectodomain and delivered intracellularly reduce membrane-bound EGFRvIII and induce apoptosis. Biol Chem 390(2):137–144

    Article  CAS  PubMed  Google Scholar 

  15. Theis MG et al (2004) Discriminatory aptamer reveals serum response element transcription regulated by cytohesin-2. Proc Natl Acad Sci U S A 101(31):11221–11226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chaloin L et al (2002) Endogenous expression of a high-affinity pseudoknot RNA aptamer suppresses replication of HIV-1. Nucleic Acids Res 30(18):4001–4008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choi KH et al (2006) Intracellular expression of the T-cell factor-1 RNA aptamer as an intramer. Mol Cancer Ther 5(9):2428–2434

    Article  CAS  PubMed  Google Scholar 

  18. Mayer G et al (2001) Controlling small guanine-nucleotide-exchange factor function through cytoplasmic RNA intramers. Proc Natl Acad Sci U S A 98(9):4961–4965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mi J et al (2006) H1 RNA polymerase III promoter-driven expression of an RNA aptamer leads to high-level inhibition of intracellular protein activity. Nucleic Acids Res 34(12):3577–3584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Klussmann S et al (1996) Mirror-image RNA that binds D-adenosine. Nat Biotechnol 14(9):1112–1115

    Article  CAS  PubMed  Google Scholar 

  21. Nolte A et al (1996) Mirror-design of L-oligonucleotide ligands binding to L-arginine. Nat Biotechnol 14(9):1116–1119

    Article  CAS  PubMed  Google Scholar 

  22. Kulkarni O et al (2007) Spiegelmer inhibition of CCL2/MCP-1 ameliorates lupus nephritis in MRL-(Fas)lpr mice. J Am Soc Nephrol 18(8):2350–2358

    Article  CAS  PubMed  Google Scholar 

  23. Sayyed SG et al (2009) Podocytes produce homeostatic chemokine stromal cell-derived factor-1/CXCL12, which contributes to glomerulosclerosis, podocyte loss and albuminuria in a mouse model of type 2 diabetes. Diabetologia 52(11):2445–2454

    Article  CAS  PubMed  Google Scholar 

  24. Helmling S et al (2004) Inhibition of ghrelin action in vitro and in vivo by an RNA-Spiegelmer. Proc Natl Acad Sci U S A 101(36):13174–13179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pendergrast PS et al (2005) Nucleic acid aptamers for target validation and therapeutic applications. J Biomol Tech 16(3):224–234

    PubMed  PubMed Central  Google Scholar 

  26. Rusconi CP et al (2004) Antidote-mediated control of an anticoagulant aptamer in vivo. Nat Biotechnol 22(11):1423–1428

    Article  CAS  PubMed  Google Scholar 

  27. Liu G et al (2009) Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Anal Chem 81(24):10013–10018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shangguan D et al (2007) Aptamers evolved from cultured cancer cells reveal molecular differences of cancer cells in patient samples. Clin Chem 53(6):1153–1155

    Article  CAS  PubMed  Google Scholar 

  29. Tang Z et al (2007) Selection of aptamers for molecular recognition and characterization of cancer cells. Anal Chem 79(13):4900–4907

    Article  CAS  PubMed  Google Scholar 

  30. Blank M et al (2001) Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen. J Biol Chem 276(19):16464–16468

    Article  CAS  PubMed  Google Scholar 

  31. Schafer R et al (2007) Aptamer-based isolation and subsequent imaging of mesenchymal stem cells in ischemic myocard by magnetic resonance imaging. Röfo 179(10):1009–1015

    CAS  PubMed  Google Scholar 

  32. Chen L et al (2011) IL-17RA aptamer-mediated repression of IL-6 inhibits synovium inflammation in a murine model of osteoarthritis. Osteoarthritis Cartilage 19(6):711–718

    Article  CAS  PubMed  Google Scholar 

  33. Gutsaeva DR et al (2011) Inhibition of cell adhesion by anti-P-selectin aptamer: a new potential therapeutic agent for sickle cell disease. Blood 117(2):727–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guo KT et al (2006) A new technique for the isolation and surface immobilization of mesenchymal stem cells from whole bone marrow using high-specific DNA aptamers. Stem Cells 24(10):2220–2231

    Article  CAS  PubMed  Google Scholar 

  35. Blank M, Blind M (2005) Aptamers as tools for target validation. Curr Opin Chem Biol 9(4):336–342

    Article  CAS  PubMed  Google Scholar 

  36. Oney S et al (2007) Antidote-controlled platelet inhibition targeting von Willebrand factor with aptamers. Oligonucleotides 17(3):265–274

    Article  CAS  PubMed  Google Scholar 

  37. Ruckman J et al (1998) 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem 273(32):20556–20567

    Article  CAS  PubMed  Google Scholar 

  38. Bock LC et al (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355(6360):564–566

    Article  CAS  PubMed  Google Scholar 

  39. Tasset DM, Kubik MF, Steiner W (1997) Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J Mol Biol 272(5):688–698

    Article  CAS  PubMed  Google Scholar 

  40. Rusconi CP et al (2002) RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 419(6902):90–94

    Article  CAS  PubMed  Google Scholar 

  41. Orava EW et al (2013) A short DNA aptamer that recognizes TNFalpha and blocks its activity in vitro. ACS Chem Biol 8(1):170–178

    Article  CAS  PubMed  Google Scholar 

  42. Homann M, Goringer HU (1999) Combinatorial selection of high affinity RNA ligands to live African trypanosomes. Nucleic Acids Res 27(9):2006–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mallikaratchy P et al (2007) Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt’s lymphoma cells. Mol Cell Proteomics 6(12):2230–2238

    Article  CAS  PubMed  Google Scholar 

  44. Shangguan D et al (2008) Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res 7(5):2133–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Daniels DA et al (2003) A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci U S A 100(26):15416–15421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fan Z et al (2013) Theranostic magnetic core-plasmonic shell star shape nanoparticle for the isolation of targeted rare tumor cells from whole blood, fluorescence imaging, and photothermal destruction of cancer. Mol Pharm 10(3):857–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ohuchi SP, Ohtsu T, Nakamura Y (2006) Selection of RNA aptamers against recombinant transforming growth factor-beta type III receptor displayed on cell surface. Biochimie 88(7):897–904

    Article  CAS  PubMed  Google Scholar 

  48. Avci-Adali M et al (2010) Upgrading SELEX technology by using lambda exonuclease digestion for single-stranded DNA generation. Molecules 15(1):1–11

    Article  CAS  Google Scholar 

  49. Meyer C, Hahn U, Rentmeister A (2011) Cell-specific aptamers as emerging therapeutics. J Nucleic Acids 2011:904750

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hong P, Li W, Li J (2012) Applications of aptasensors in clinical diagnostics. Sensors (Basel) 12(2):1181–1193

    Article  CAS  Google Scholar 

  51. Zhang J et al (2013) A novel electrochemical aptasensor for thrombin detection based on the hybridization chain reaction with hemin/G-quadruplex DNAzyme-signal amplification. Analyst 138(16):4558–4564

    Article  CAS  PubMed  Google Scholar 

  52. Freeman R et al (2012) Optical aptasensors for the analysis of the vascular endothelial growth factor (VEGF). Anal Chem 84(14):6192–6198

    Article  CAS  PubMed  Google Scholar 

  53. Zhang X et al (2011) A fluorescence aptasensor based on DNA charge transport for sensitive protein detection in serum. Analyst 136(22):4764–4769

    Article  CAS  PubMed  Google Scholar 

  54. Liu Y et al (2010) Aptamer-based electrochemical biosensor for interferon gamma detection. Anal Chem 82(19):8131–8136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tran DT et al (2011) Nanocrystalline diamond impedimetric aptasensor for the label-free detection of human IgE. Biosens Bioelectron 26(6):2987–2993

    Article  CAS  PubMed  Google Scholar 

  56. Pultar J et al (2009) Aptamer-antibody on-chip sandwich immunoassay for detection of CRP in spiked serum. Biosens Bioelectron 24(5):1456–1461

    Article  CAS  PubMed  Google Scholar 

  57. Lee SJ et al (2008) ssDNA aptamer-based surface plasmon resonance biosensor for the detection of retinol binding protein 4 for the early diagnosis of type 2 diabetes. Anal Chem 80(8):2867–2873

    Article  CAS  PubMed  Google Scholar 

  58. Pan Y et al (2010) Selective collection and detection of leukemia cells on a magnet-quartz crystal microbalance system using aptamer-conjugated magnetic beads. Biosens Bioelectron 25(7):1609–1614

    Article  CAS  PubMed  Google Scholar 

  59. Chai Y et al (2011) A novel electrochemiluminescence aptasensor for protein based on a sensitive N-(aminobutyl)-N-ethylisoluminol-functionalized gold nanoprobe. Analyst 136(16):3244–3251

    Article  CAS  PubMed  Google Scholar 

  60. Miodek A et al (2013) Electrochemical aptasensor of human cellular prion based on multiwalled carbon nanotubes modified with dendrimers: a platform for connecting redox markers and aptamers. Anal Chem 85(16):7704–7712

    Article  CAS  PubMed  Google Scholar 

  61. Wu WH et al (2012) Aptasensors for rapid detection of Escherichia coli O157:H7 and Salmonella typhimurium. Nanoscale Res Lett 7(1):658

    Article  PubMed  PubMed Central  Google Scholar 

  62. Griffin LC et al (1993) In vivo anticoagulant properties of a novel nucleotide-based thrombin inhibitor and demonstration of regional anticoagulation in extracorporeal circuits. Blood 81(12):3271–3276

    CAS  PubMed  Google Scholar 

  63. Diener JL et al (2009) Inhibition of von Willebrand factor-mediated platelet activation and thrombosis by the anti-von Willebrand factor A1-domain aptamer ARC1779. J Thromb Haemost 7(7):1155–1162

    Article  CAS  PubMed  Google Scholar 

  64. Gilbert JC et al (2007) First-in-human evaluation of anti von Willebrand factor therapeutic aptamer ARC1779 in healthy volunteers. Circulation 116(23):2678–2686

    Article  CAS  PubMed  Google Scholar 

  65. Biesecker G et al (1999) Derivation of RNA aptamer inhibitors of human complement C5. Immunopharmacology 42(1–3):219–230

    Article  CAS  PubMed  Google Scholar 

  66. Santulli-Marotto S et al (2003) Multivalent RNA aptamers that inhibit CTLA-4 and enhance tumor immunity. Cancer Res 63(21):7483–7489

    CAS  PubMed  Google Scholar 

  67. McNamara JO et al (2008) Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J Clin Invest 118(1):376–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dollins CM et al (2008) Assembling OX40 aptamers on a molecular scaffold to create a receptor-activating aptamer. Chem Biol 15(7):675–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gilboa E, McNamara J 2nd, Pastor F (2013) Use of oligonucleotide aptamer ligands to modulate the function of immune receptors. Clin Cancer Res 19(5):1054–1062

    Article  CAS  PubMed  Google Scholar 

  70. Pastor F et al (2011) Targeting 4-1BB costimulation to disseminated tumor lesions with bi-specific oligonucleotide aptamers. Mol Ther 19(10):1878–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chu TC et al (2006) Aptamer mediated siRNA delivery. Nucleic Acids Res 34(10):e73

    Article  PubMed  PubMed Central  Google Scholar 

  72. Dassie JP et al (2009) Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol 27(9):839–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. McNamara JO 2nd et al (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 24(8):1005–1015

    Article  CAS  PubMed  Google Scholar 

  74. Ni X et al (2011) Prostate-targeted radiosensitization via aptamer-shRNA chimeras in human tumor xenografts. J Clin Invest 121(6):2383–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chu TC et al (2006) Aptamer:toxin conjugates that specifically target prostate tumor cells. Cancer Res 66(12):5989–5992

    Article  CAS  PubMed  Google Scholar 

  76. Bagalkot V et al (2006) An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Ed Engl 45(48):8149–8152

    Article  CAS  PubMed  Google Scholar 

  77. Dhar S et al (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci U S A 105(45):17356–17361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dhar S et al (2011) Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc Natl Acad Sci U S A 108(5):1850–1855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Farokhzad OC et al (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A 103(16):6315–6320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shieh YA et al (2010) Aptamer-based tumor-targeted drug delivery for photodynamic therapy. ACS Nano 4(3):1433–1442

    Article  CAS  PubMed  Google Scholar 

  81. Taghdisi SM et al (2010) Targeted delivery of daunorubicin to T-cell acute lymphoblastic leukemia by aptamer. J Drug Target 18(4):277–281

    Article  CAS  PubMed  Google Scholar 

  82. Huang YF et al (2009) Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells. Chembiochem 10(5):862–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhou J et al (2008) Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol Ther 16(8):1481–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen CH et al (2008) Aptamer-based endocytosis of a lysosomal enzyme. Proc Natl Acad Sci U S A 105(41):15908–15913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ferreira CS et al (2009) Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic Acids Res 37(3):866–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wu Y et al (2010) DNA aptamer-micelle as an efficient detection/delivery vehicle toward cancer cells. Proc Natl Acad Sci U S A 107(1):5–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li N et al (2010) Directed evolution of gold nanoparticle delivery to cells. Chem Commun (Camb) 46(3):392–394

    Article  Google Scholar 

  88. Guo K et al (2005) Aptamer-based capture molecules as a novel coating strategy to promote cell adhesion. J Cell Mol Med 9(3):731–736

    Article  CAS  PubMed  Google Scholar 

  89. Guo KT et al (2007) The effect of electrochemical functionalization of Ti-alloy surfaces by aptamer-based capture molecules on cell adhesion. Biomaterials 28(3):468–474

    Article  CAS  PubMed  Google Scholar 

  90. Ardjomandi N et al (2013) Identification of an aptamer binding to human osteogenic-induced progenitor cells. Nucleic Acid Ther 23(1):44–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhao W et al (2011) Mimicking the inflammatory cell adhesion cascade by nucleic acid aptamer programmed cell-cell interactions. FASEB J 25(9):3045–3056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Iwagawa T et al (2012) Selection of RNA aptamers against mouse embryonic stem cells. Biochimie 94(1):250–257

    Article  CAS  PubMed  Google Scholar 

  93. Avci-Adali M et al (2011) Current concepts and new developments for autologous in vivo endothelialisation of biomaterials for intravascular applications. Eur Cell Mater 21:157–176

    CAS  PubMed  Google Scholar 

  94. Hoffmann J et al (2008) Immobilized DNA aptamers used as potent attractors for porcine endothelial precursor cells. J Biomed Mater Res A 84(3):614–621

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meltem Avci-Adali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Avci-Adali, M. (2016). Selection and Application of Aptamers and Intramers. In: Böldicke, T. (eds) Protein Targeting Compounds. Advances in Experimental Medicine and Biology, vol 917. Springer, Cham. https://doi.org/10.1007/978-3-319-32805-8_11

Download citation

Publish with us

Policies and ethics