Skip to main content

Modeling and Control of Robots on Rough Terrain

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

In this chapter, we introduce modeling and control for wheeled mobile robots and tracked vehicles. The target environment is rough terrains, which includes both deformable soil and heaps of rubble. Therefore, the topics are roughly divided into two categories, wheeled robots on deformable soil and tracked vehicles on heaps of rubble.

After providing an overview of this area in Sect. 50.1, a modeling method of wheeled robots on a deformable terrain is introduced in Sect. 50.2. It is based on terramechanics, which is the study focusing on the mechanical properties of natural rough terrain and its response to off-road vehicle, specifically the interaction between wheel/track and soil. In Sect. 50.3, the control of wheeled robots is introduced. A wheeled robot often experiences wheel slippage as well as its sideslip while traversing rough terrain. Therefore, the basic approach in this section is to compensate the slip via steering and driving maneuvers. In the case of navigation on heaps of rubble, tracked vehicles have much advantage. To improve traversability in such challenging environments, some tracked vehicles are equipped with subtracks, and one kinematical modeling method of tracked vehicle on rough terrain is introduced in Sect. 50.4. In addition, stability analysis of such vehicles is introduced in Sect. 50.5. Based on such kinematical model and stability analysis, a sensor-based control of tracked vehicle on rough terrain is introduced in Sect. 50.6. Sect. 50.7 summarizes this chapter.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

COG:

center of gravity

DEM:

discrete element method

DLR:

Deutsches Zentrum für Luft- und Raumfahrt

DOF:

degree of freedom

ESM:

energy stability margin

FEM:

finite element method

IMU:

inertial measurement unit

JAXA:

Japan Aerospace Exploration Agency

LIDAR:

light detection and ranging

MIT:

Massachusetts Institute of Technology

NESM:

normalized ESM

PID:

proportional–integral–derivative

SCM:

soil contact model

SLAM:

simultaneous localization and mapping

UGV:

unmanned ground vehicle

References

  1. M. Jurkat, C. Nuttall, P. Haley: The AMC' 74 Mobility Model, Tech. Rep. 11921 (US Army Tank Automotive Command, Warren, 1975)

    Book  Google Scholar 

  2. R.B. Ahlvin, P.W. Haley: NATO Reference Mobility Model Edition II, NRMM User's Guide, Tech. Rep. GL-92-19 (US Army WES, Vicksburg, 1992)

    Google Scholar 

  3. A. Gibbesch, B. Schäfer: Multibody system modelling and simulation of planetary rover mobility on soft terrain, 8th Int. Symp. Artif. Intell. Robotics Autom. Space (i-SAIRAS), Munich (2005)

    Google Scholar 

  4. R. Krenn, A. Gibbesch, G. Hirzinger: Contact dynamics simulation of rover locomotion, Proc. 9th Int. Symp. on Artif. Intell., Robotics Autom. Space, Los Angeles (2007)

    Google Scholar 

  5. D. Holz, A. Azimi, M. Teichmann, J. Kövecses: Mobility prediction of rovers on soft terrain: Effects of wheel- and tool-induced terrain deformations, Proc. 15th Int. Conf. Climbing Walk. Robots Support Technol. Mob. Mach. (CLAWAR) (2012)

    Google Scholar 

  6. J.Y. Wong: Theory of Ground Vehicles (Wiley, New York 1978)

    Google Scholar 

  7. M. Buehler, K. Iagnemma, S. Singh (Eds.): The 2005 DARPA Grand Challenge: The Great Robot Race Springer Tracts Adv. Robotics Ser, Vol. 36 (Springer, Berlin, Heidelberg 2005)

    Google Scholar 

  8. M. Buehler, K. Iagnemma, S. Singh (Eds.): The DARPA Urban Challenge: Autonomous Vehicles in City Traffic, Springer Tracts Adv. Robotics, Vol. 56 (Springer, Berlin, Heidelberg 2009)

    Google Scholar 

  9. C. Li, T. Zhang, D.I. Goldman: A terradynamics of legged locomotion on granular media, Science 339, 1408–1412 (2013)

    Article  Google Scholar 

  10. C. de Wit, H. Khennouf, C. Samson, O. Sordalen: Nonlinear control design for mobile robots. In: Recent Trends in Mobile Robots, World Scientific Series in Robotics and Automated System, Vol. 11, ed. by Y. Zheng (World Scientific, Singapore 1993)

    Google Scholar 

  11. A. Luca, G. Oriolo, C. Samson: Feedback control of nonholonomic car-like robots. In: Robot Motion Planning and Control, ed. by J. Laumond (Springer, Berlin, Heidelberg 1998) pp. 171–254

    Chapter  Google Scholar 

  12. F. Rio, G. Jimenez, J. Sevillano, S. Vicente, A. Balcells: A generalization of path following for mobile robots, Proc. 1999 IEEE Int. Conf. Robotics Autom. (ICRA), Detroit (1999) pp. 7–12

    Google Scholar 

  13. S. Rezaei, J. Guivant, E. Nebot: Car-like robot path following in large unstructured environments, Proc. IEEE Int. Conf. Intell. Robots Syst. (IROS) (2003) pp. 2468–2473

    Google Scholar 

  14. P. Coelho, U. Nunes: Path-following control of mobile robots in presence of uncertainties, IEEE Trans. Robotics 21(2), 252–261 (2005)

    Article  Google Scholar 

  15. D. Helmick, Y. Cheng, D. Clouse, L. Matthies, S. Roumeliotis: Path following using visual odometry for a Mars rover in high-slip environments, Proc. 2004 IEEE Aerosp. Conf., Big Sky (2004) pp. 772–789

    Google Scholar 

  16. D. Helmick, S. Roumeliotis, Y. Cheng, D. Clouse, M. Bajracharya, L. Matthies: Slip-compensated path following for planetary exploration rovers, Adv. Robotics 20(11), 1257–1280 (2006)

    Article  Google Scholar 

  17. G. Ishigami, K. Nagatani, K. Yoshida: Slope traversal controls for planetary exploration rover on sandy terrain, J. Field Robotics 26(3), 264–286 (2009)

    Article  Google Scholar 

  18. D.A. Messuri, C.A. Klein: Automatic body regulation for maintaining stability of a legged vehicle during rough-terrain locomotion, IEEE J. Robotics Autom. 1(3), 132–141 (1985)

    Article  Google Scholar 

  19. S. Hirose, H. Tsukagoshi, K. Yoneda: Normalized energy stability margin and its contour of walking vehicles on rough terrain, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2001) pp. 181–186

    Google Scholar 

  20. E. Magid, T. Tsubouchi, E. Koyanagi, T. Yoshida, S. Tadokoro: Controlled balance losing in random step environment for path planning of a teleoperated crawler-type vehicle, J. Field Robotics 28(6), 932–949 (2011)

    Article  Google Scholar 

  21. A. Jacoff, E. Messina, B.A. Weiss, S. Tadokoro, Y. Nakagawa: Test arenas and performance metrics for urban search and rescue robots, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Las Vegas (2003) pp. 3396–3403

    Google Scholar 

  22. K. Ohno, V. Chun, T. Yuzawa, E. Takeuchi, S. Tadokoro, T. Yoshida, E. Koyanagi: Rollover avoidance using a stability margin for a tracked vehicle with sub-tracks, IEEE Int. Workshop Saf. Sec. Rescue Robotics (2009)

    Google Scholar 

  23. N. Vandapel, D. Huber, A. Kapuria, M. Hebert: Natural terrain classification using 3-D ladar data, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 5 (2004) pp. 5117–5122

    Google Scholar 

  24. M. Onosato, S. Yamamoto, M. Kawajiri, F. Tanaka: Digital gareki archives: An approach to know more about collapsed houses for supporting search and rescue activities, IEEE Int. Symp. Saf. Secur. Rescue Robotics (SSRR) (2012) pp. 1–6

    Google Scholar 

  25. A. Lacaze, K. Murphy, M. Del Giorno: Autonomous mobility for the demo III experimental unmanned vehicles, AUVS Int. Conf. Unnanned Veh. (2002)

    Google Scholar 

  26. K. Ohno, T. Suzuki, K. Higashi, M. Tsubota, E. Takeuchi, S. Tadokoro: Classification of 3-D point cloud data that includes line and frame objects on the basis of geometrical features and the pass rate of laser rays, Proc. 8th Int. Conf. Field Serv. Robotics (2012)

    Google Scholar 

  27. M. Onosato, T. Watasue: Two attempts at linking robots with disaster information: InfoBalloon and gareki engineering, Adv. Robotics 16(6), 545–548 (2002)

    Article  Google Scholar 

  28. M. Onosato: Digital GAREKI modeling for exploring knowledge of disaster-collapsed houses, IEEE Int. Workshop Saf. Secur. Rescue Robotics (SSRR) (2006)

    Google Scholar 

  29. L. Woosub, K. Sungchul, K. Munsang, P. Mignon: ROBHAZ-DT3: Teleoperated mobile platform with passively adaptive double-track for hazardous environment applications, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2004) pp. 33–38

    Google Scholar 

  30. B. Yamauchi: Packbot: A versatile platform for military robotics, Proc. SPIE 5422, 228–237 (2004)

    Article  Google Scholar 

  31. D. Inoue, K. Ohno, S. Nakamura, S. Tadokoro, E. Koyanagi: Whole-body touch sensors for tracked mobile robots using force-sensitive chain guides, IEEE Int. Workshop Saf. Secur. Rescue Robotics (SSRR) (2008) pp. 71–76

    Google Scholar 

  32. A. Jain, J. Balaram, J. Cameron, J. Guineau, C. Lim, M. Pornerantz, G. Sohl: Recent developments in the ROAMS planetary rover simulation environment, Proc. 2004 IEEE Aerosp. Conf., Big Sky (2004) pp. 861–876

    Google Scholar 

  33. K. Iagnemma, C. Senatore, B. Trease, R. Arvidson, A. Shaw, F. Zhou, L. Van Dyke, R. Lindemann: Terramechanics modeling of mars surface exploration rovers for simulation and parameter estimation, ASME Int. Des. Eng. Tech. Conf. (2011)

    Google Scholar 

  34. R. Bauer, W. Leung, T. Barfoot: Development of a dynamic simulation tool for the exomars rover, Proc. 8th Int. Symp. Artif. Intell., Robotics Autom. Space, Munich (2005)

    Google Scholar 

  35. M.G. Bekker: Theory of Land Locomotion (Univ. Michigan Press, Ann Arbor 1956)

    Google Scholar 

  36. M.G. Bekker: Introduction to Terrain-Vehicle Systems (Univ. Michigan Press, Ann Arbor 1969)

    Google Scholar 

  37. J.Y. Wong: Theory of Ground Vehicles, 4th edn. (Wiley, Hoboken 2008)

    Google Scholar 

  38. J.Y. Wong, A.R. Reece: Prediction of rigid wheel performance based on the analysis of soil-wheel stresses – Part I: Performance of driven rigid wheels, J. Terramechanics 4(1), 81–98 (1967)

    Article  Google Scholar 

  39. J.Y. Wong, A.R. Reece: Prediction of rigid wheel performance based on the analysis of soil-wheel stresses – Part II: Performance of towed rigid wheels, J. Terramechanics 4(2), 7–25 (1967)

    Article  Google Scholar 

  40. I.C. Schmid: Interaction of vehicle and terrain results from 10 years research at IKK, J. Terramechanics 32(1), 3–25 (1995)

    Article  Google Scholar 

  41. L. Ding, Z. Deng, H. Gao, K. Nagatani, K. Yoshida: Planetary rovers' wheel-soil interaction mechanics: New challenges and applications for wheeled mobile robots, Intell. Serv. Robotics 4(1), 17–38 (2010)

    Article  Google Scholar 

  42. H. Nakashima, H. Fujii, A. Oida, M. Momozu, Y. Kawase, H. Kanamori, S. Aoki, T. Yokoyama: Parametric analysis of lugged wheel performance for a lunar microrover by means of DEM, J. Terramechanics 44, 153–162 (2007)

    Article  Google Scholar 

  43. H. Nakashima, H. Fujii, A. Oida, M. Momozu, H. Kanamori, S. Aoki, T. Yokoyama, H. Shimizu, J. Miyasaka, K. Ohdoi: Discrete element method analysis of single wheel performance for a small lunar rover on sloped terrain, J. Terramechanics 47, 307–321 (2010)

    Article  Google Scholar 

  44. W. Li, Y. Huang, Y. Cui, S. Dong, J. Wang: Trafficability analysis of lunar mare terrain by means of the discrete element method for wheeled rover locomotion, J. Terramechanics 47, 161–172 (2010)

    Article  Google Scholar 

  45. K. Iagnemma: A Laboratory single wheel testbed for studying planetary rover wheel-terrain interaction, Tech. Rep. 01-05-05 (MIT, Cambridge 2005)

    Google Scholar 

  46. S. Wakabayashi, H. Sato, S. Nishida: Design and mobility evaluation of tracked lunar vehicle, J. Terramechanics 46(3), 105–114 (2009)

    Article  Google Scholar 

  47. N. Patel, R. Slade, J. Clemmet: The ExoMars rover locomotion subsystem, J. Terramechanics 47, 227–242 (2010)

    Article  Google Scholar 

  48. G. Ishigami, A. Miwa, K. Nagatani, K. Yoshida: Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil, J. Field Robotics 24(3), 233–250 (2007)

    Article  Google Scholar 

  49. R. Lindemann, D. Bickler, B. Harrington, G. Ortiz, C. Voorhees: Mars exploration rover mobility development, IEEE Robotics Autom. Mag. 13(2), 19–26 (2006)

    Article  Google Scholar 

  50. G. Ishigami, A. Miwa, K. Nagatani, K. Yoshida: Terramechanics-based analysis on slope traversability for a planetary exploration rover, Proc. 25th Int. Symp. Space Technol. Sci. (2006) pp. 1025–1030

    Google Scholar 

  51. S. Michaud, L. Richter, T. Thueer, A. Gibbesch, T. Huelsing, N. Schmitz, S. Weiss, A. Krebs, N. Patel, L. Joudrier, R. Siegwart, B. Schäfer, A. Ellery: Rover chassis evaluation and design optimisation using the RCET, Proc. 9th ESA Workshop Adv. Space Technol. Robotics Autom. (ASTRA) (2006)

    Google Scholar 

  52. K. Nagatani, A. Ikeda, K. Sato, K. Yoshida: Accurate estimation of drawbar pull of wheeled mobile robots traversing sandy terrain using built-in force sensor array wheel, Proc. 2009 IEEE/RSJ Int. Conf. Robots Syst. (IROS), St. Loius (2009) pp. 2373–2378

    Google Scholar 

  53. G. Meirion-Griffith, M. Spenko: A Modified pressure-sinkage model for small, rigid wheels on deformable terrains, J. Terramechanics 48(2), 149–155 (2011)

    Article  Google Scholar 

  54. C. Senatore, K. Iagnemma: Direct shear behaviour of dry, granular soils for low normal stress with application to lightweight robotic vehicle modeling, 17th Conf. Terrain-Veh. Syst. (ISTVS), Blacksburg (2011)

    Google Scholar 

  55. K. Iagnemma, S. Kang, H. Shibly, S. Dubowsky: Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers, IEEE Trans. Robotics 20(5), 921–927 (2004)

    Article  Google Scholar 

  56. S. Hutangkabodee, Y. Zweiri, L. Seneviratne, K. Althoefer: Soil parameter identification for wheel-terrain interaction dynamics and traversability prediction, Int. J. Autom. Comput. 3(3), 244–251 (2006)

    Article  Google Scholar 

  57. D. Helmick, A. Angelova, L. Matthies, C. Brooks, I. Halatci, S. Dubowsky, K. Iagnemma: Experimental results from a terrain adaptive navigation system for planetary rovers, Proc. 9th Int. Symp. Artif. Intell., Robotics Autom. Space (i-SAIRAS), Hollywood (2008)

    Google Scholar 

  58. G. Ishigami, G. Kewlani, K. Iagnemma: A statistical approach to mobility prediction for planetary surface exploration rovers in uncertain terrain, IEEE Robotics Autom. Mag. 16(4), 61–70 (2009)

    Article  Google Scholar 

  59. O. Yoshito, K. Nagatani, K. Yoshida, S. Tadokoro, T. Yoshida, E. Koyanagi: Shared autonomy system for traversing and turning tracked vehicles on rough terrain based on continuous three-dimensional terrain scanning, J. Field Robotics 28(6), 875–893 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Nagatani .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Mobility prediction of rovers on soft terrain available from http://handbookofrobotics.org/view-chapter/50/videodetails/184

:

Experiments of wheeled rovers in a sandbox covered with loose soil available from http://handbookofrobotics.org/view-chapter/50/videodetails/185

:

Terradynamics of legged locomotion for traversal in granular media available from http://handbookofrobotics.org/view-chapter/50/videodetails/186

:

Interaction human-robot supervision, long range science rover for Mars exploration available from http://handbookofrobotics.org/view-chapter/50/videodetails/187

:

A path-following control scheme for a four-wheeled mobile robot available from http://handbookofrobotics.org/view-chapter/50/videodetails/188

:

Evaluation test of tracked vehicles on random step fields in the Disaster City available from http://handbookofrobotics.org/view-chapter/50/videodetails/189

:

Autonomous sub-tracks control available from http://handbookofrobotics.org/view-chapter/50/videodetails/190

:

Autonomous sub-tracks control available from http://handbookofrobotics.org/view-chapter/50/videodetails/191

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nagatani, K., Ishigami, G., Okada, Y. (2016). Modeling and Control of Robots on Rough Terrain. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics