Skip to main content

Motion Planning and Obstacle Avoidance

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter describes motion planning and obstacle avoidance for mobile robots. We will see how the two areas do not share the same modeling background. From the very beginning of motion planning, research has been dominated by computer sciences. Researchers aim at devising well-grounded algorithms with well-understood completeness and exactness properties.

The challenge of this chapter is to present both nonholonomic motion planning (Sects. 47.147.6) and obstacle avoidance (Sects. 47.747.10) issues. Section 47.11 reviews recent successful approaches that tend to embrace the whole problem of motion planning and motion control. These approaches benefit from both nonholonomic motion planning and obstacle avoidance methods.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

DD:

differentially driven

DWA:

dynamic window approach

HSGR:

high safety goal

HSWR:

high safety wide region

IJCAI:

International Joint Conference on Artificial Intelligence

LARC:

Lie algebra rank condition

ND:

nearness diagram navigation

ORM:

obstacle restriction method

PFM:

potential field method

PRM:

probabilistic roadmap method

RRT:

rapidly exploring random tree

RS:

Reeds and Shepp

VFH:

vector field histogram

VO:

velocity obstacle

References

  1. N.J. Nilson: A mobile automaton: An application of artificial intelligence techniques, 1st Int. Jt. Conf. Artif. Intell. (1969) pp. 509–520

    Google Scholar 

  2. A. Thompson: The navigation system of the JPL robot, 5th Int. Jt. Conf. Artif. Intell., Cambridge (1977) pp. 749–757

    Google Scholar 

  3. G. Giralt, R. Sobek, R. Chatila: A multi-level planning and navigation system for a mobile robot: A 1st approach to Hilare, 6th Int. Jt. Conf. Artif. Intell. (1979) pp. 335–337

    Google Scholar 

  4. T. Lozano-Pérez: Spatial planning: A configuration space approach, IEEE Trans. Comput. 32(2), 108–120 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. J.C. Latombe: Robot Motion Planning (Kluwer, Dordrecht 1991)

    Book  MATH  Google Scholar 

  6. J.-P. Laumond: Feasible trajectories for mobile robots with kinematic and environment constraints. In: Intelligent Autonomous Systems, ed. by F.C.A. Groen (Hertzberger, Amsterdam 1987) pp. 346–354

    Google Scholar 

  7. Z. Li, J.F. Canny: Nonholonomic Motion Planning (Kluwer, Dordrecht 1992)

    MATH  Google Scholar 

  8. M. Likhachev, D. Ferguson: Planning long dynamically-feasible maneuvers for autonomous vehicles, Int. J. Robotics Res. 28(8), 933–945 (2009)

    Article  Google Scholar 

  9. H. Sussmann: Lie brackets, real analyticity and geometric control. In: Differential Geometric Control Theory, Progress in Mathematics, Vol. 27, ed. by R. Brockett, R. Millman, H. Sussmann (Birkhauser, New York 1982) pp. 1–116

    Google Scholar 

  10. H.J. Sussmann, V. Jurdjevic: Controllability of nonlinear systems, J. Differ. Equ. 12, 95–116 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  11. J.-P. Laumond: Singularities and topological aspects in nonholonomic motion planning. In: Nonholonomic motion Planning, ed. by Z. Li, J.F. Canny (Kluwer, Boston 1992) pp. 149–199

    MATH  Google Scholar 

  12. J.-P. Laumond, J.J. Risler: Nonholonomic systems: Controllability and complexity, Theor. Comput. Sci. 157, 101–114 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. J.-P. Laumond, P. Jacobs, M. Taix, R. Murray: A motion planner for nonholonomic mobile robot, IEEE Trans. Robotics Autom. 10(5), 577–593 (1994)

    Article  Google Scholar 

  14. P. Cheng, S.M. LaValle: Reducing metric sensitivity in randomized trajectory design, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2001) pp. 43–48

    Google Scholar 

  15. J.A. Reeds, R.A. Shepp: Optimal paths for a car that goes both forward and backwards, Pac. J. Math. 145(2), 367–393 (1990)

    Article  MathSciNet  Google Scholar 

  16. P. Souères, J.-P. Laumond: Shortest path synthesis for a car-like robot, IEEE Trans. Autom. Control 41(5), 672–688 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Balkcom, M. Mason: Time optimal trajectories for bounded velocity differential drive vehicles, Int. J. Robotics Res. 21(3), 199–218 (2002)

    Article  Google Scholar 

  18. D. Tilbury, R. Murray, S. Sastry: Trajectory generation for the n-trailer problem using Goursat normal form, IEEE Trans. Autom. Control 40(5), 802–819 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Sekhavat, J.-P. Laumond: Topological property for collision-free nonholonomic motion planning: The case of sinusoidal inputs for chained form systems, IEEE Trans. Robotics Autom. 14(5), 671–680 (1998)

    Article  Google Scholar 

  20. M. Fliess, J. Lévine, P. Martin, P. Rouchon: Flatness and defect of non-linear systems: Introductory theory and examples, Int. J. Control 61(6), 1327–1361 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Rouchon, M. Fliess, J. Lévine, P. Martin: Flatness and motion planning: The car with n trailers, Eur. Control Conf. (1993) pp. 1518–1522

    Google Scholar 

  22. F. Lamiraux, J.-P. Laumond: Flatness and smalltime controllability of multibody mobile robots: Application to motion planning, IEEE Trans. Autom. Control 45(10), 1878–1881 (2000)

    Article  MATH  Google Scholar 

  23. P. Rouchon: Necessary condition and genericity of dynamic feedback linearization, J. Math. Syst. Estim. Control 4(2), 1–14 (1994)

    MathSciNet  MATH  Google Scholar 

  24. P. Rouchon, M. Fliess, J. Lévine, P. Martin: Flatness, motion planning and trailer systems, IEEE Int. Conf. Decis. Control (1993) pp. 2700–2705

    Google Scholar 

  25. S. Sekhavat, J. Hermosillo: Cycab bi-steerable cars: A new family of differentially flat systems, Adv. Robotics 16(5), 445–462 (2002)

    Article  Google Scholar 

  26. J. Barraquand, J.C. Latombe: Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles, Algorithmica 10, 121–155 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Divelbiss, T. Wen: A path space approach to nonholonomic motion planning in the presence of obstacles, IEEE Trans. Robotics Autom. 13(3), 443–451 (1997)

    Article  Google Scholar 

  28. S. LaValle, J. Kuffner: Randomized kinodynamic planning, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1999) pp. 473–479

    Google Scholar 

  29. F. Lamiraux, E. Ferré, E. Vallée: Kinodynamic motion planning: Connecting exploration trees using trajectory optimization methods, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004) pp. 3987–3992

    Google Scholar 

  30. V. Lumelsky, A. Stepanov: Path planning strategies for a point mobile automation moving admist unknown obstacles of arbitrary shape, Algorithmica 2, 403–430 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  31. R. Chatila: Path planning and environmental learning in a mobile robot system, Eur. Conf. Artif. Intell. (1982)

    Google Scholar 

  32. L. Gouzenes: Strategies for solving collision-free trajectories problems for mobile robots and manipulator robots, Int. J. Robotics Res. 3(4), 51–65 (1984)

    Article  Google Scholar 

  33. R. Chattergy: Some heuristics for the navigation of a robot, Int. J. Robotics Res. 4(1), 59–66 (1985)

    Article  Google Scholar 

  34. O. Khatib: Real-time obstacle avoidance for manipulators and mobile robots, Int. J. Robotics Res. 5, 90–98 (1986)

    Article  Google Scholar 

  35. B.H. Krogh, C.E. Thorpe: Integrated path planning and dynamic steering control for autonomous vehicles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1986) pp. 1664–1669

    Google Scholar 

  36. J. Borenstein, Y. Koren: Real-time obstacle avoidance for fast mobile robots, IEEE Trans. Syst. Man Cybern. 19(5), 1179–1187 (1989)

    Article  Google Scholar 

  37. K. Azarm, G. Schmidt: Integrated mobile robot motion planning and execution in changing indoor environments, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1994) pp. 298–305

    Google Scholar 

  38. A. Masoud, S. Masoud, M. Bayoumi: Robot navigation using a pressure generated mechanical stress field, the biharmonical potential approach, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1994) pp. 124–129

    Google Scholar 

  39. L. Singh, H. Stephanou, J. Wen: Real-time robot motion control with circulatory fields, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 2737–2742

    Chapter  Google Scholar 

  40. J. Borenstein, Y. Koren: The vector field histogram-fast obstacle avoidance for mbile robots, IEEE Trans. Robotics Autom. 7, 278–288 (1991)

    Article  Google Scholar 

  41. J. Minguez: The obstacle restriction method (ORM): Obstacle avoidance in difficult scenarios, IEEE/RSJ Int. Conf. Intell. Robot Syst. (IROS) (2005)

    Google Scholar 

  42. D. Vikerimark, J. Minguez: Reactive obstacle avoidance for mobile robots that operate in confined 3-D workspaces, IEEE Mediterr. Electrotech. Conf. (2006)

    Google Scholar 

  43. W. Feiten, R. Bauer, G. Lawitzky: Robust obstacle avoidance in unknown and cramped environments, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1994) pp. 2412–2417

    Google Scholar 

  44. D. Fox, W. Burgard, S. Thrun: The dynamic window approach to collision avoidance, IEEE Robotics Autom. Mag. 4(1), 23–33 (1997)

    Article  Google Scholar 

  45. P. Fiorini, Z. Shiller: Motion planning in dynamic environments using velocity obstacles, Int. J. Robotics Res. 17(7), 760–772 (1998)

    Article  Google Scholar 

  46. F. Large, C. Laugier, Z. Shiller: Navigation among moving obstacles using the NLVO: Principles and applications to intelligent vehicles, Auton. Robots 19(2), 159–171 (2005)

    Article  Google Scholar 

  47. R. Simmons: The curvature-velocity method for local obstacle avoidance, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 3375–3382

    Chapter  Google Scholar 

  48. J. Minguez, L. Montano: Nearness diagram (ND) navigation: Collision avoidance in troublesome scenarios, IEEE Trans. Robotics Autom. 20(1), 45–59 (2004)

    Article  Google Scholar 

  49. J. Minguez, J. Osuna, L. Montano: A divide and conquer strategy to achieve reactive collision avoidance in troublesome scenarios, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004)

    Google Scholar 

  50. J.W. Durham, F. Bullo: Smooth nearness-diagram navigation, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2008)

    Google Scholar 

  51. C.-C. Yu, W.-C. Chen, C.-C. Wang: Self-tuning nearness diagram navigation, Int. Conf. Serv. Interact. Robotics (SIRCon) (2009)

    Google Scholar 

  52. M. Mujahad, D. Fischer, B. Mertsching, H. Jaddu: Closest gap based (CG) reactive obstacle avoidance Navigation for highly cluttered environments, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2010) pp. 1805–1812

    Google Scholar 

  53. R.B. Tilove: Local obstacle avoidance for mobile robots based on the method of artificial potentials, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1990) pp. 566–571

    Chapter  Google Scholar 

  54. R.C. Arkin: Behavior-Based Robotics (MIT Press, Cambridge 1999)

    Google Scholar 

  55. J. Minguez, L. Montano: Abstracting any vehicle shape and the kinematics and dynamic constraints from reactive collision avoidance methods, Eur. Conf. Mob. Robots (2007)

    Google Scholar 

  56. J. Minguez, L. Montano, J. Santos-Victor: Abstracting the vehicle shape and kinematic constraints from the obstacle avoidance methods, Auton. Robots 20(1), 43–59 (2006)

    Article  Google Scholar 

  57. L. Armesto, V. Girbés, M. Vincze, S. Olufs, P. Muñoz-Benavent: Mobile robot obstacle avoidance based on quasi-holonomic smooth paths, Lect. Notes Comput. Sci. 7429, 244–255 (2012)

    Article  Google Scholar 

  58. J.L. Blanco, J. González, J.A. Fernández-Madrigal: Foundations of parameterized trajectories-based space transformations for obstacle avoidance. In: Motion Planning, ed. by X.-Y. Jing (InTech, Rijeka 2008)

    Google Scholar 

  59. J. Minguez, L. Montano: Robot navigation in very complex dense and cluttered indoor/outdoor environments, 15th IFAC World Congr. (2002)

    Google Scholar 

  60. A. De Luca, G. Oriolo: Local incremental planning for nonholonomic mobile robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1994) pp. 104–110

    Google Scholar 

  61. A. Bemporad, A. De Luca, G. Oriolo: Local incremental planning for car-like robot navigating among obstacles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 1205–1211

    Chapter  Google Scholar 

  62. S. Quinlan, O. Khatib: Elastic bands: Connecting path planning and control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1993) pp. 802–807

    Google Scholar 

  63. O. Brock, O. Khatib: Real-time replanning in high-dimensional configuration spaces using sets of homotopic paths, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000) pp. 550–555

    Google Scholar 

  64. F. Lamiraux, D. Bonnafous, O. Lefebvre: Reactive path deformation for nonholonomic mobile robots, IEEE Trans. Robotics 20(6), 967–977 (2004)

    Article  Google Scholar 

  65. Y. Yang, O. Brock: Elastic roadmaps – Motion generation for autonomous mobile manipulation, Auton. Robots 28(1), 113–130 (2010)

    Article  Google Scholar 

  66. E. Yoshida, C. Esteves, I. Belousov, J.-P. Laumond, T. Sakaguchi, K. Yokoi: Planning 3-d collision-free dynamic robotic motion through iterative reshaping, IEEE Trans. Robotics 24, 1186–1198 (2008)

    Article  Google Scholar 

  67. H. Kurniawati, T. Fraichard: From path to trajectory deformation, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2007)

    Google Scholar 

  68. O. Brock, O. Khatib: High-speed navigation using the global dynamic window approach, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1999) pp. 341–346

    Google Scholar 

  69. I. Ulrich, J. Borenstein: VFH*: Local obstacle avoidance with look-ahead verification, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000) pp. 2505–2511

    Google Scholar 

  70. J. Minguez, L. Montano: Sensor-based motion robot motion generation in unknown, dynamic and troublesome scenarios, Robotics Auton. Syst. 52(4), 290–311 (2005)

    Article  Google Scholar 

  71. C. Stachniss, W. Burgard: An integrated approach to goal-directed obstacle avoidance under dynamic constraints for dynamic environments, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2002) pp. 508–513

    Google Scholar 

  72. R. Philipsen, R. Siegwart: Smooth and efficient obstacle avoidance for a tour guide robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003)

    Google Scholar 

  73. L. Montesano, J. Minguez, L. Montano: Lessons learned in integration for sensor-based robot navigation systems, Int. J. Adv. Robotics Syst. 3(1), 85–91 (2006)

    Google Scholar 

  74. F. Lu, E. Milios: Robot pose estimation in unknown environments by matching 2-D range scans, Intell. Robotic Syst. 18, 249–275 (1997)

    Article  Google Scholar 

  75. J. Minguez, L. Montesano, F. Lamiraux: Metric-based iterative closest point scan matching for sensor displacement estimation, IEEE Trans. Robotics 22(5), 1047–1054 (2006)

    Article  Google Scholar 

  76. A. Stenz: The focussed $d^{*}$ Algorithm for real-time replanning, Int. Jt. Conf. Artif. Intell. (IJCAI) (1995) pp. 1652–1659

    Google Scholar 

  77. S. Koenig, M. Likhachev: Improved fast replanning for robot navigation in unknown terrain, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002)

    Google Scholar 

  78. J.-P. Laumond: Robot motion planning and control. In: Lecture Notes in Control and Information Science, ed. by J.P. Laumond (Springer, New York 1998)

    Google Scholar 

  79. H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.E. Kavraki, S. Thrun: Principles of Robot Motion (MIT Press, Cambridge 2005)

    MATH  Google Scholar 

  80. S.M. LaValle: Planning Algorithms (Cambridge Univ. Press, Cambridge 2006)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Minguez .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Sensor-based trajectory deformation and docking for nonholonomic mobile robots available from http://handbookofrobotics.org/view-chapter/47/videodetails/80

:

Autonomous robotic smart wheelchair navigation in an urban environment available from http://handbookofrobotics.org/view-chapter/47/videodetails/707

:

Sena wheelchair: Autonomous navigation at University of Malaga (2007) available from http://handbookofrobotics.org/view-chapter/47/videodetails/708

:

Robotic wheelchair: Autonomous navigation with Google Glass available from http://handbookofrobotics.org/view-chapter/47/videodetails/709

:

A ride in the google self driving car available from http://handbookofrobotics.org/view-chapter/47/videodetails/710

:

Mobile robot navigation system in outdoor pedestrian environment available from http://handbookofrobotics.org/view-chapter/47/videodetails/711

:

Mobile robot autonomous navigation in Gracia district, Barcelona available from http://handbookofrobotics.org/view-chapter/47/videodetails/712

:

Autonomous navigation of a mobile vehicle available from http://handbookofrobotics.org/view-chapter/47/videodetails/713

:

Autonomous robot cars drive DARPA Urban challenge available from http://handbookofrobotics.org/view-chapter/47/videodetails/714

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Minguez, J., Lamiraux, F., Laumond, JP. (2016). Motion Planning and Obstacle Avoidance. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics