Skip to main content

Wheeled Robots

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

The purpose of this chapter is to introduce, analyze, and compare various wheeled mobile robots (GlossaryTerm

WMR

s) and to present several realizations and commonly encountered designs. The mobility of WMR is discussed on the basis of the kinematic constraints resulting from the pure rolling conditions at the contact points between the wheels and the ground. Practical robot structures are classified according to the number of wheels, and features are introduced focusing on commonly adopted designs. Omnimobile robot and articulated robots realizations are described. Wheel–terrain interaction models are presented in order to compute forces at the contact interface. Four possible wheel-terrain interaction cases are shown on the basis of relative stiffness of the wheel and terrain. A suspension system is required to move on uneven surfaces. Structures, dynamics, and important features of commonly used suspensions are explained.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ICR:

instantaneous center of rotation

WMR:

wheeled mobile robot

References

  1. H. Asama, M. Sato, L. Bogoni: Development of an omnidirectional mobile robot with 3 DOF decoupling drive mechanism, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1995) pp. 1925–1930

    Google Scholar 

  2. L. Ferriere, G. Campion, B. Raucent: ROLLMOBS, a new drive system for omnimobile robots, Robotica 19, 1–9 (2001)

    Article  Google Scholar 

  3. W. Chung: Nonholonomic Manipulators, Springer Tracts Adv. Robotics, Vol. 13 (Springer, Berlin, Heidelberg 2004)

    Google Scholar 

  4. J.E. Colgate, M. Peshkin, W. Wannasuphoprasit: Nonholonomic haptic display, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 539–544

    Chapter  Google Scholar 

  5. G. Campion, G. Bastin, B. dAndrea-Novel: Structural properties and classification of kinematic and dynamic models of wheeled mobile robots, IEEE Trans. Robotics Autom. 12, 47–62 (1996)

    Article  Google Scholar 

  6. R. Nakajima, T. Tsubouchi, S. Yuta, E. Koyanagi: A development of a new mechanism of an autonomous unicycle, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1997) pp. 906–912

    Google Scholar 

  7. G.C. Nandy, X. Yangsheng: Dynamic model of a gyroscopic wheel, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1998) pp. 2683–2688

    Google Scholar 

  8. Y. Ha, S. Yuta: Trajectory tracking control for navigation of self-contained mobile inverse pendulum, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (1994) pp. 1875–1882

    Google Scholar 

  9. Y. Takahashi, T. Takagaki, J. Kishi, Y. Ishii: Back and forward moving scheme of front wheel raising for inverse pendulum control wheel chair robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2001) pp. 3189–3194

    Google Scholar 

  10. K.-S. Byun, S.-J. Kim, J.-B. Song: Design of continuous alternate wheels for omnidirectional mobile robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2001) pp. 767–772

    Google Scholar 

  11. M. West, H. Asada: Design and control of ball wheel omnidirectional vehicles, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1995) pp. 1931–1938

    Google Scholar 

  12. B. Carlisle: An omnidirectional mobile robot. In: Development in Robotics, ed. by B. Rooks (IFS, Bedford 1983) pp. 79–87

    Google Scholar 

  13. M. Wada, S. Mori: Holonomic and omnidirectional vehicle with conventional tires, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 3671–3676

    Chapter  Google Scholar 

  14. D.B. Reister, M.A. Unseren: Position and constraint force control of a vehicle with two or more steerable drive wheels, IEEE Trans. Robotics Autom. 9(6), 723–731 (1993)

    Article  Google Scholar 

  15. Y. Nakamura, H. Ezaki, Y. Tan, W. Chung: Design of steering mechanism and control of nonholonomic trailer systems, IEEE Trans. Robotics Autom. 17(3), 367–374 (2001)

    Article  Google Scholar 

  16. S. Hirose: Biologically Inspired Robots: Snake-Like Locomotion and Manipulation (Oxford Univ. Press, Oxford 1993)

    Google Scholar 

  17. R. Siegwart, P. Lamon, T. Estier, M. Lauria, R. Piguet: Innovative design for wheeled locomotion in rough terrain, J. Robotics Auton. Syst. 40, 151–162 (2003)

    Article  Google Scholar 

  18. M.G. Bekker: Introduction to Terrain-Vehicle Systems (Univ. Michigan Press, Ann Arbor 1969)

    Google Scholar 

  19. H. Shibly, K. Iagnemma, S. Dubowsky: An equivalent soil mechanics formulation for rigid wheels in deformable terrain, with application to planetary exploration rovers, J. Terramech. 42, 1–13 (2005)

    Article  Google Scholar 

  20. G. Ishigami, A. Miwa, K. Nagatani, K. Yoshida: Terramechanics-based for steering maneuver of planetary exploration rovers on loose soil, J. Field Robotics 24(3), 233–250 (2007)

    Article  Google Scholar 

  21. G. Meirion-Griffith, M. Spenko: A modified pressure-sinkage model for small, rigid wheels on deformable terrains, J. Terramech. 48(2), 149–155 (2011)

    Article  Google Scholar 

  22. C. Senatore, M. Wulfmeier, P. Jayakumar, J. Maclennan, K. Iagnemma: Investigation of stress and failure in granular soils for lightweight robotic vehicle applications, Proc. Ground Vehicle Syst. Eng. Technol. Symp. (2012)

    Google Scholar 

  23. C. Harnisch, B. Lach, R. Jakobs, M. Troulis, O. Nehls: A new tyre–soil interaction model for vehicle simulation on deformable ground, Vehicle Syst. Dyn. 43(1), 384–394 (2005)

    Article  Google Scholar 

  24. J.Y. Wong: Theory of Ground Vehicles, 3rd edn. (Wiley, Hoboken 2001)

    Google Scholar 

  25. C. Senatore, C. Sandu: Off-road tire modeling and the multi-pass effect for vehicle dynamics simulation, J. Terramech. 48(4), 265–276 (2011)

    Article  Google Scholar 

  26. H.B. Pacejka: Tire and Vehicle Dynamics, 2nd edn. (Elsevier, Oxford 2005)

    Google Scholar 

  27. P. Barak: Magic Numbers in Design of Suspensions for Passenger Cars, SAE Tech. Pap. No. 911921 (SAE, Warrendale 1991)

    Google Scholar 

  28. J.C. Dixon: Suspension Geometry and Computation (Wiley, Chichester 2009)

    Book  Google Scholar 

  29. J.K. Hedrick, T. Butsuen: Invariant properties of automotive suspensions, Proc. Inst. Mech. Eng. Part D J. Automob, Eng. 204(1), 21–27 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woojin Chung .

Editor information

Editors and Affiliations

Video-References

Video-References

:

An omnidirectional mobile robot with active caster wheelsavailable from http://handbookofrobotics.org/view-chapter/24/videodetails/325

:

Articulated robot – a robot pushing 3 passive trailersavailable from http://handbookofrobotics.org/view-chapter/24/videodetails/326

:

An omnidirectional robot with 4 Mecanum Wheelsavailable from http://handbookofrobotics.org/view-chapter/24/videodetails/327

:

An omnidirectional robot with 4 Swedish wheelsavailable from http://handbookofrobotics.org/view-chapter/24/videodetails/328

:

An innovative space rover with extended climbing abilitiesavailable from http://handbookofrobotics.org/view-chapter/24/videodetails/239

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chung, W., Iagnemma, K. (2016). Wheeled Robots. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics