Skip to main content

Design and Performance Evaluation

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

In this chapter we survey some of the tools and criteria used in the mechanical design and performance evaluation of robots. Our focus is on robots that are (a) primarily intended for manipulation tasks and (b) constructed with one or more serial kinematic chains. The kinematics of parallel robots is addressed in detail in Chap. 18; their elastostatics is the subject of Sect. 16.5.1. Wheeled robots, walking robots, multifingered hands, and robots intended for outdoor applications, i. e., those encompassing what is known as field robotics, are studied in their own chapters; here we provide an overview of the main classes of these robots as relating to design.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

6-D:

six-dimensional

6R:

six-revolute

7R:

seven-revolute

AGV:

autonomous guided vehicle

ASIMO:

advanced step in innovative mobility

ASV:

adaptive suspension vehicle

ATHLETE:

all-terrain hex-legged extra-terrestrial explorer

BP:

base plate

CAE:

computer-aided engineering

DH:

Denavit–Hartenberg

DOF:

degree of freedom

EE:

end-effector

FEA:

finite element analysis

GIE:

generalized-inertia ellipsoid

GSP:

Gough–Stewart platform

MARS:

multiappendage robotic system

MEMS:

microelectromechanical system

MP:

moving plate

NASA:

National Aeronautics and Space Agency

OSU:

Ohio State University

PKM:

parallel kinematics machine

QRIO:

quest for curiosity

RCP:

rover chassis prototype

SCARA:

selective compliance assembly robot arm

SPU:

spherical, prismatic, universal

UAV:

unmanned aerial vehicle

References

  1. O. Bottema, B. Roth: Theoretical Kinematics (North-Holland, Amsterdam 1979), also available by Dover Publishing, New York 1990

    MATH  Google Scholar 

  2. J. Angeles: The qualitative synthesis of parallel manipulators, ASME J. Mech. Des. 126(4), 617–624 (2004)

    Article  Google Scholar 

  3. R. Hartenberg, J. Denavit: Kinematic Synthesis of Linkages (McGraw-Hill, New York 1964)

    MATH  Google Scholar 

  4. G. Pahl, W. Beitz: Engineering Design. A Systematic Approach, 3rd edn. (Springer, London 2007), translated from the original Sixth Edition in German

    Google Scholar 

  5. M. Petterson, J. Andersson, P. Krus, X. Feng, D. Wäppling: Industrial robot design optimization in the conceptual design phase, Proc. IEEE Int. Conf. Mechatron. Robotics, Vol. 2, ed. by P. Drews (2004) pp. 125–130

    Google Scholar 

  6. R. Clavel: Device for the movement and positioning of an element in space, US Patent 4976582 (1990)

    Google Scholar 

  7. R. Vijaykumar, K.J. Waldron, M.J. Tsai: Geometric optimization of serial chain manipulator structures for working volume and dexterity, Int. J. Robotics Res. 5(2), 91–103 (1986)

    Article  Google Scholar 

  8. J.P. Merlet: Parallel Robots (Kluwer, Boston 2006)

    MATH  Google Scholar 

  9. J. Angeles: Fundamentals of Robotic Mechanical Systems, 3rd edn. (Springer, New York 2007)

    Book  MATH  Google Scholar 

  10. K. Hoffman: Analysis in Euclidean Space (Prentice Hall, Englewood Cliffs 1975)

    MATH  Google Scholar 

  11. L. Burmester: Lehrbuch der Kinematik (Arthur Felix, Leipzig 1886)

    MATH  Google Scholar 

  12. J.M. McCarthy: Geometric Design of Linkages (Springer, New York 2000)

    MATH  Google Scholar 

  13. J. Angeles: Is there a characteristic length of a rigid-body displacement?, Mech. Mach. Theory 41, 884–896 (2006)

    Article  MATH  Google Scholar 

  14. H. Li: Ein Verfahren zur vollständigen Lösung der Rückwärtstransformation für Industrieroboter mit allegemeiner Geometrie, Ph.D. Thesis (Universität-Gesamthochschule Duisburg, Duisburg 1990)

    Google Scholar 

  15. M. Raghavan, B. Roth: Kinematic analysis of the 6R manipulator of general geometry, Proc. 5th Int. Symp. Robotics Res., ed. by H. Miura, S. Arimoto (MIT, Cambridge 1990)

    Google Scholar 

  16. J. Angeles: The degree of freedom of parallel robots: A group-theoretic approach, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Barcelona (2005) pp. 1017–1024

    Google Scholar 

  17. C.C. Lee, J.M. Hervé: Translational parallel manipulators with doubly planar limbs, Mech. Mach. Theory 41, 433–455 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Roth: Performance evaluation of manipulators from a kinematic viewpoint, National Bureau of Standards -- NBS SP 495, 39–62 (1976)

    Google Scholar 

  19. A. Kumar, K.J. Waldron: The workspaces of a mechanical manipulator, ASME J. Mech. Des. 103, 665–672 (1981)

    Google Scholar 

  20. D.C.H. Yang, T.W. Lee: On the workspace of mechanical manipulators, ASME J. Mech. Trans. Autom. Des. 105, 62–69 (1983)

    Article  Google Scholar 

  21. Y.C. Tsai, A.H. Soni: An algorithm for the workspace of a general n-R robot, ASME J. Mech. Trans. Autom. Des. 105, 52–57 (1985)

    Article  Google Scholar 

  22. K.C. Gupta, B. Roth: Design considerations for manipulator workspace, ASME J. Mech. Des. 104, 704–711 (1982)

    Google Scholar 

  23. K.C. Gupta: On the nature of robot workspace, Int. J. Robotics Res. 5(2), 112–121 (1986)

    Article  Google Scholar 

  24. F. Freudenstein, E. Primrose: On the analysis and synthesis of the workspace of a three-link, turning-pair connected robot arm, ASME J. Mech. Trans. Autom. Des. 106, 365–370 (1984)

    Article  Google Scholar 

  25. C.C. Lin, F. Freudenstein: Optimization of the workspace of a three-link turning-pair connected robot arm, Int. J. Robotics Res. 5(2), 91–103 (1986)

    Article  Google Scholar 

  26. T. Yoshikawa: Manipulability of robotic mechanisms, Int. J. Robotics Res. 4(2), 3–9 (1985)

    Article  Google Scholar 

  27. J. Loncaric: Geometric Analysis of Compliant Mechanisms in Robotics, Ph.D. Thesis (Harvard University, Cambridge 1985)

    Google Scholar 

  28. B. Paden, S. Sastry: Optimal kinematic design of 6R manipulators, Int. J. Robotics Res. 7(2), 43–61 (1988)

    Article  Google Scholar 

  29. J.K. Salisbury, J.J. Craig: Articulated hands: Force control and kinematic issues, Int. J. Robotics Res. 1(1), 4–17 (1982)

    Article  Google Scholar 

  30. G.H. Golub, C.F. Van Loan: Matrix Computations (Johns Hopkins Univ. Press, Baltimore 1989)

    MATH  Google Scholar 

  31. G. Strang: Linear Algebra and Its Applications, 3rd edn. (Harcourt Brace Jovanovich, San Diego 1988)

    MATH  Google Scholar 

  32. A. Dubrulle: An optimum iteration for the matrix polar decomposition, Electron. Trans. Numer. Anal. 8, 21–25 (1999)

    MathSciNet  MATH  Google Scholar 

  33. W.A. Khan, J. Angeles: The kinetostatic optimization of robotic manipulators: The inverse and the direct problems, ASME J. Mech. Des. 128, 168–178 (2006)

    Article  Google Scholar 

  34. H. Pottmann, J. Wallner: Computational Line Geometry (Springer, Berlin, Heidelberg 2001)

    MATH  Google Scholar 

  35. H. Asada: A geometrical representation of manipulator dynamics and its application to arm design, Trans. ASME J. Dyn. Sys. Meas. Contr. 105(3), 131–135 (1983)

    Article  MATH  Google Scholar 

  36. T. Yoshikawa: Dynamic manipulability of robot manipulators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1985) pp. 1033–1038

    Google Scholar 

  37. P.A. Voglewede, I. Ebert-Uphoff: Measuring closeness to singularities for parallel manipulators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004) pp. 4539–4544

    Google Scholar 

  38. A. Bowling, O. Khatib: The dynamic capability equations: A new tool for analyzing robotic manipulator performance, IEEE Trans. Robotics 21(1), 115–123 (2005)

    Article  Google Scholar 

  39. C.M. Gosselin, J. Angeles: A new performance index for the kinematic optimization of robotic manipulators, Proc. 20th ASME Mech. Conf. (1988) pp. 441–447

    Google Scholar 

  40. C. Gosselin, J. Angeles: The optimum kinematic design of a planar three-degree-of-freedom parallel manipulator, ASME J. Mech. Trans. Autom. Des. 110, 35–41 (1988)

    Article  Google Scholar 

  41. A. Bicchi, C. Melchiorri, D. Balluchi: On the mobility and manipulability of general multiple limb robots, IEEE Trans. Robotics Autom. 11(2), 232–235 (1995)

    Article  Google Scholar 

  42. P. Chiacchio, S. Chiaverini, L. Sciavicco, B. Siciliano: Global task space manipulability ellipsoids for multiple-arm systems, IEEE Trans. Robotics Autom. 7, 678–685 (1991)

    Article  Google Scholar 

  43. C. Melchiorri: Comments on Global task space manipulability ellipsoids for multiple-arm systems and further considerations, IEEE Trans. Robotics Autom. 9, 232–235 (1993)

    Article  Google Scholar 

  44. P. Chiacchio, S. Chiaverini, L. Sciavicco, B. Siciliano: Reply to comments on Global task space manipulability ellipsoids for multiple-arm systems' and further considerations, IEEE Trans. Robotics Autom. 9, 235–236 (1993)

    Google Scholar 

  45. F.C. Park: Optimal robot design and differential geometry, ASME J. Mech. Des. 117, 87–92 (1995)

    Article  Google Scholar 

  46. F.C. Park, J. Kim: Manipulability of closed kinematic chains, ASME J. Mech. Des. 120(4), 542–548 (1998)

    Article  Google Scholar 

  47. A. Liégeois: Automatic supervisory control for the configuration and behavior of multibody mechanisms, IEEE Trans. Sys. Man. Cyber. 7(12), 842–868 (1977)

    MATH  Google Scholar 

  48. C.A. Klein, C.H. Huang: Review of pseudo-inverse control for use with kinematically redundant manipulators, IEEE Trans. Syst. Man Cybern. 13(2), 245–250 (1983)

    Article  Google Scholar 

  49. J.M. Hollerbach: Optimum kinematic design of a seven degree of freedom manipulator. In: Robotics Research: The Second International Symposium, ed. by H. Hanafusa, H. Inoue (MIT, Cambridge 1985)

    Google Scholar 

  50. M.W. Spong: Remarks on robot dynamics: Canonical transformations and riemannian geometry, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1992) pp. 454–472

    Google Scholar 

  51. T.J. Graettinger, B.H. Krogh: The acceleration radius: A global performance measure for robotic manipulators, IEEE J. Robotics Autom. 4(11), 60–69 (1988)

    Article  Google Scholar 

  52. M. Griffis, J. Duffy: Global stiffness modeling of a class of simple compliant couplings, Mech. Mach. Theory 28, 207–224 (1993)

    Article  Google Scholar 

  53. S. Howard, M. Zefran, V. Kumar: On the $6\times 6$ cartesian stiffness matrix for three-dimensional motions, Mech. Mach. Theory 33, 389–408 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  54. L. Meirovitch: Fundamentals of vibrations (McGraw-Hill, Boston 2001)

    Book  Google Scholar 

  55. C.M. Gosselin, J.-F. Hamel: The agile eye: A high-performance three-degree-of-freedom camera-orienting device, Proc. IEEE Int. Conf. Robotics Autom.(ICRA) (1994) pp. 781–786

    Google Scholar 

  56. O. Company, F. Pierrot, T. Shibukawa, K. Morita: Four-Degree-of-Freedom Parallel Robot, EU Patent No. EP 1084802 (2001)

    Google Scholar 

  57. X. Kong, C. Gosselin: Type synthesis of parallel mechanisms, Springer Tract. Adv. Robotics, Vol. 33 (Springer, Berlin, Heidelberg 2007)

    MATH  Google Scholar 

  58. J. Hervé: The Lie group of rigid body displacements, a fundamental tool for mechanism design, Mech. Mach. Theory 34, 719–730 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  59. W.A. Khan, J. Angeles: A novel paradigm for the qualitative synthesis of simple kinematic chains based on complexity measures, ASME J. Mech. Robotics 3(3), 0310161–03101611 (2011)

    Google Scholar 

  60. J. Lončarivc: Normal forms of stiffness and compliance matrices, IEEE J. Robotics Autom. 3(6), 567–572 (1987)

    Article  Google Scholar 

  61. X. Ding, J.M. Selig: On the compliance of coiled springs, Int. J. Mech. Sci. 46, 703–727 (2004)

    Article  MATH  Google Scholar 

  62. J.M. Selig: The spatial stiffness matrix from simple stretched springs, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2000) pp. 3314–3319

    Google Scholar 

  63. J. Angeles: On the nature of the Cartesian stiffness matrix, Rev. Soc. Mex. Ing. Mec. 3(5), 163–170 (2010)

    Google Scholar 

  64. A.K. Pradeep, P.J. Yoder, R. Mukundan: On the use of dual-matrix exponentials in robotic kinematics, Int. J. Robotics Res. 8(5), 57–66 (1989)

    Article  Google Scholar 

  65. A. Taghvaeipour, J. Angeles, L. Lessard: On the elastostatic analysis of mechanical systems, Mech. Mach. Theory 58, 202–216 (2013)

    Article  Google Scholar 

  66. D. Zwillinger (Ed.): CRC Standard Mathematical Tables and Formulae, 31st edn. (CRC, Boca Raton 2002)

    MATH  Google Scholar 

  67. B. Christensen: Robotic lunar base with legs changes everything, http://www.space.com/5216-robotic-lunar-base-legs.html

  68. L. Wen, T. Wang, G. Wu, J. Li: A novel method based on a force-feedback technique for the hydrodynamic investigation of kinematic effects on robotic fish, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011), Paper No. 0828

    Google Scholar 

  69. L.L. Hines, V. Arabagi, M. Sitti: Free-flight simulation and pitch-and-roll control experiments of a sub-gram flapping-flight micro aerial vehicle, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011), Paper No. 0602

    Google Scholar 

  70. C.E. Thorne, M. Yim: Towards the dvelopment of gyroscopically controled micro air vehicles, Proc. 2011 IEEE Int. Conf. Robotics Autom. (2011), Paper No. 1800

    Google Scholar 

  71. T. Lee, M. Leok, N.H. McClamroch: Geometric tracking control of a quadrotor UAV on SE(3), Proc. 49th IEEE Conf. Decis. Control (2010)

    Google Scholar 

  72. Robots take flight: Quadroto unmanned aerial vehicles, IEEE Robotics Autom. Mag. 19(3) (2012), http://online.qmags.com/RAM0912?pg=3&mode=2#pg1&mode2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Angeles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Angeles, J., Park, F.C. (2016). Design and Performance Evaluation. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics