Skip to main content

Vitamin D Receptor and Interaction with DNA: From Physiology to Chronic Kidney Disease

  • Chapter
  • First Online:
Vitamin D in Chronic Kidney Disease

Abstract

The biologically most active vitamin D metabolite, 1,25-dihydroxyvitamin D3 [calcitriol or 1,25(OH)2D3] exerts the vast majority of its classical actions and attributed “non-traditional” effects by means of interaction with the vitamin D receptor (VDR). Here, we review the VDR structure and function, as well as the molecular actions of vitamin D mediated via this classical endocrine receptor. We also describe the interactions of the 1,25(OH)2D3/VDR complex with the retinoid X receptor, VDR coregulators (coactivators and corepressors) and the vitamin D-response element, whereby the expression of many 1,25(OH)2D3–responsive genes is positively or negatively controlled in many different tissues through complex conformational changes. On the other hand, chronic kidney disease (CKD) may be considered “a disease of dysfunctional receptors” since CKD has been associated with resistance to the action of many hormones including 1,25(OH)2D3. CKD and uremic toxins interfere not only with 1,25(OH)2D3 metabolism but also with various VDR processes such as basal VDR synthesis, binding and function. In view of the ubiquitous nature of VDR, several VDR activators are being developed with the aim of achieving an improved biological profile for a therapeutic application in one of the pleiotropic functions of the natural hormone, while avoiding untoward effects including excessive calcium and phosphate loading. However, randomized clinical trials are required to confirm all the proposed cardiovascular and survival benefits of the old and new VDR activators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Razin A. CpG methylation, chromatin structure and gene silencing-a three-way connection. EMBO J. 1998;17:4905–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carlberg C. Target genes of vitamin D: spatio-temporal interaction of chromatin, VDR, and response elements. In: Vitamin D. 3rd ed. Oxford, UK: Elsevier; 2011. p. 211–26.

    Google Scholar 

  3. Evans RM, Mangelsdorf DJ. Nuclear receptors, RXR, and the Big Bang. Cell. 2014;157:255–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maglich JM, Sluder A, Guan X, et al. Comparison of complete nuclear receptor sets from the human, caenorhabditis elegans and drosophila genomes. Genome Biol. 2001;2:RESEARCH0029.

    Google Scholar 

  5. Nuclear Receptors Nomenclature Committee. A unified nomenclature system for the nuclear receptor superfamily. Cell. 1999;97:161–63.

    Google Scholar 

  6. Pike JW, Meyer MB, Lee SM. The vitamin D receptor: biochemical, molecular, biological and genomic era investigations. In: Vitamin D. 3rd ed. Oxford, UK: Elsevier; 2011. p. 97–135.

    Google Scholar 

  7. Robinson-Rechavi M, Carpentier AS, Duffraisse M, et al. How many nuclear hormone receptors are there in the human genome? Trends Genet. 2001;17:554–6.

    Article  CAS  PubMed  Google Scholar 

  8. Helsen C, Claessens F. Looking at nuclear receptors from a new angle. Mol Cell Endocrinol. 2014;382:97–106.

    Article  CAS  PubMed  Google Scholar 

  9. Norman AW. The mode of action of vitamin D. Biol Rev Camb Philos Soc. 1968;43:97–137.

    Article  CAS  PubMed  Google Scholar 

  10. Fraser DR, Kodicek E. Unique biosynthesis by kidney of a biological active vitamin D metabolite. Nature. 1970;228:764–6.

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Zhu J, DeLuca HF. The vitamin D receptor in the proximal renal tubule is a key regulator of serum 1alpha,25-dihydroxyvitamin D(3). Am J Physiol Endocrinol Metab. 2015;308:E201–5.

    Article  CAS  PubMed  Google Scholar 

  12. Rojas-Rivera J, De La Piedra C, Ramos A, et al. The expanding spectrum of biological actions of vitamin D. Nephrol Dial Transplant. 2010;25:2850–65.

    Article  CAS  PubMed  Google Scholar 

  13. Owen TA, Aronow MS, Barone LM, et al. Pleiotropic effects of vitamin D on osteoblast gene expression are related to the proliferative and differentiated state of the bone cell phenotype: dependency upon basal levels of gene expression, duration of exposure, and bone matrix competency in norma. Endocrinology. 1991;128:1496–504.

    Article  CAS  PubMed  Google Scholar 

  14. Haussler MR, Haussler CA, Whitfield GK, et al. The nuclear vitamin D receptor controls the expression of genes encoding factors which feed the “Fountain of Youth” to mediate healthful aging. J Steroid Biochem Mol Biol. 2010;121:88–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bar-Shavit Z, Teitelbaum SL, Reitsma P, et al. Induction of monocytic differentiation and bone resorption by 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci U S A. 1983;80:5907–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Haussler MR, Whitfield GK, Haussler CA, Hsieh J-C, Jurutka PW. Nuclear vitamin D receptor: natural lingands, molecular structure-function, and transcriptional control of viral genes. In: Vitamin D. 3rd ed. Oxford, UK: Elsevier; 2011. pp.137–70.

    Google Scholar 

  17. Liu W, Yu WR, Carling T, et al. Regulation of gp330/megalin expression by vitamins A and D. Eur J Clin Invest. 1998;28:100–7.

    Article  CAS  PubMed  Google Scholar 

  18. Canaff L, Hendy GN. Human calcium-sensing receptor gene. Vitamin D response elements in promoters P1 and P2 confer transcriptional responsiveness to 1,25-dihydroxyvitamin D. J Biol Chem. 2002;277:30337–50.

    Article  CAS  PubMed  Google Scholar 

  19. Lau WL, Leaf EM, Hu MC, et al. Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int. 2012;82:1261–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hesse M, Frohlich LF, Zeitz U, et al. Ablation of vitamin D signaling rescues bone, mineral, and glucose homeostasis in Fgf-23 deficient mice. Matrix Biol. 2007;26:75–84.

    Article  CAS  PubMed  Google Scholar 

  21. Renkema KY, Alexander RT, Bindels RJ, et al. Calcium and phosphate homeostasis: concerted interplay of new regulators. Ann Med. 2008;40:82–91.

    Article  CAS  PubMed  Google Scholar 

  22. Cohen-Lahav M, Shany S, Tobvin D, et al. Vitamin D decreases NFkappaB activity by increasing IkappaBalpha levels. Nephrol Dial Transplant. 2006;21:889–97.

    Article  CAS  PubMed  Google Scholar 

  23. Moreno J, Krishnan AV, Swami S, et al. Regulation of prostaglandin metabolism by calcitriol attenuates growth stimulation in prostate cancer cells. Cancer Res. 2005;65:7917–25.

    Article  CAS  PubMed  Google Scholar 

  24. Keisala T, Minasyan A, Lou Y-R, et al. Premature aging in vitamin D receptor mutant mice. J Steroid Biochem Mol Biol. 2009;115:91–7.

    Article  CAS  PubMed  Google Scholar 

  25. Dusso A, Arcidiacono MV, Yang J, et al. Vitamin D inhibition of TACE and prevention of renal osteodystrophy and cardiovascular mortality. J Steroid Biochem Mol Biol. 2010;121:193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morgado-Pascual JL, Rayego-Mateos S, Valdivielso JM, et al. Paricalcitol inhibits aldosterone-induced proinflammatory factors by modulating epidermal growth factor receptor pathway in cultured tubular epithelial cells. Biomed Res Int. 2015;2015:783538.

    Google Scholar 

  27. Husain K, Hernandez W, Ansari RA, et al. Inflammation, oxidative stress and renin angiotensin system in atherosclerosis. World J Biol Chem. 2015;6:209–17.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kuro-o M. Klotho and aging. Biochim Biophys Acta. 2009;1790:1049–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390:45–51.

    Article  CAS  PubMed  Google Scholar 

  30. Hu MC, Kuro-o M, Moe OW. Klotho and chronic kidney disease. Contrib Nephrol. 2013;180:47–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu MC, Shi M, Zhang J, et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2010;22:124–36.

    Article  PubMed  CAS  Google Scholar 

  32. Richards JB, Valdes AM, Gardner JP, et al. Higher serum vitamin D concentrations are associated with longer leukocyte telomere length in women. Am J Clin Nutr. 2007;86:1420–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Feldman D, Krishnan AV, Swami S, et al. The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer. 2014;14:342–57.

    Article  CAS  PubMed  Google Scholar 

  34. Cozzolino M, Bover J, Vervloet M, Brandenburg V. A multidisciplinary review of the science of vitamin D receptor activation. Kidney Int Suppl. 2011;1:107–10.

    Article  Google Scholar 

  35. Omdahl JL, Morris HA, May BK. Hydroxylase enzymes of the vitamin D pathway: expression, function, and regulation. Annu Rev Nutr. 2002;22:139–66.

    Article  CAS  PubMed  Google Scholar 

  36. Adams JS, Singer FR, Gacad MA, et al. Isolation and structural identification of 1,25-dihydroxyvitamin D3 produced by cultured alveolar macrophages in sarcoidosis. J Clin Endocrinol Metab. 1985;60:960–6.

    Article  CAS  PubMed  Google Scholar 

  37. Dusso AS, Tokumoto M. Defective renal maintenance of the vitamin D endocrine system impairs vitamin D renoprotection: a downward spiral in kidney disease. Kidney Int. 2011;79:715–29.

    Article  CAS  PubMed  Google Scholar 

  38. Holick MF. Vitamin D: evolutionary, physiological and health perspectives. Curr Drug Targets. 2011;12:4–18.

    Article  CAS  PubMed  Google Scholar 

  39. Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol. 2008;8:685–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chun RF, Liu PT, Modlin RL, et al. Impact of vitamin D on immune function: lessons learned from genome-wide analysis. Front Physiol. 2014;5:151.

    Article  PubMed  PubMed Central  Google Scholar 

  41. White JH. Vitamin D, signaling, infectious diseases, and regulation of innate immunity. Infect Immun. 2008;76:3837–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311:1770–3.

    Article  CAS  PubMed  Google Scholar 

  43. Santoro D, Lucisano S, Gagliostro G, et al. Vitamin D receptor polymorphism in chronic kidney disease patients with complicated cardiovascular disease. J Ren Nutr. 2015;25:187–93.

    Article  CAS  PubMed  Google Scholar 

  44. Pilz S, Tomaschitz A, Drechsler C, et al. Vitamin D deficiency and heart disease. Kidney Int Suppl. 2011;1:111–5.

    Article  CAS  Google Scholar 

  45. Li YC, Kong J, Wei M, et al. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest. 2002;110:229–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Arcidiacono MV, Cozzolino M, Spiegel N, et al. Activator protein 2alpha mediates parathyroid TGF-alpha self-induction in secondary hyperparathyroidism. J Am Soc Nephrol. 2008;19:1919–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Staab CA, Maser E. 11beta-Hydroxysteroid dehydrogenase type 1 is an important regulator at the interface of obesity and inflammation. J Steroid Biochem Mol Biol. 2010;119:56–72.

    Article  CAS  PubMed  Google Scholar 

  48. Cozzolino M, Lu Y, Finch J, et al. p21WAF1 and TGF-alpha mediate parathyroid growth arrest by vitamin D and high calcium. Kidney Int. 2001;60:2109–17.

    Article  CAS  PubMed  Google Scholar 

  49. Melenhorst WB, Visser L, Timmer A, et al. ADAM17 upregulation in human renal disease: a role in modulating TGF-alpha availability? Am J Physiol Renal Physiol. 2009;297:F781–90.

    Article  CAS  PubMed  Google Scholar 

  50. Donate-Correa J, Dominguez-Pimentel V, Mendez-Perez ML, et al. Selective vitamin D receptor activation as anti-inflammatory target in chronic kidney disease. Mediators Inflamm. 2014;2014:670475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Navarro-González JF, Donate-Correa J, Méndez ML, et al. Anti-inflammatory profile of paricalcitol in hemodialysis patients: a prospective, open-label, pilot study. J Clin Pharmacol. 2013;53:421–6.

    Article  PubMed  Google Scholar 

  52. Shahnazari M, Yao W, Corr M, et al. Targeting the Wnt signaling pathway to augment bone formation. Curr Osteoporos Rep. 2008;6:142–8.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chen D, Li Y, Zhou Z, et al. HIF-1α inhibits Wnt signaling pathway by activating Sost expression in osteoblasts. PLoS One. 2013;8:e65940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. London GM. Mechanisms of arterial calcifications and consequences for cardiovascular function. Kidney Int Suppl. 2013;3:442–5.

    Article  CAS  Google Scholar 

  55. Nigwekar SU, Thadhani R. Vitamin D receptor activation: cardiovascular and renal implications. Kidney Int Suppl. 2013;3:427–30.

    Article  CAS  Google Scholar 

  56. Labuda M, Fujiwara TM, Ross MV, et al. Two hereditary defects related to vitamin D metabolism map to the same region of human chromosome 12q13–14. J Bone Miner Res. 1992;7:1447–53.

    Article  CAS  PubMed  Google Scholar 

  57. Glorieux G, Vanholder R. Blunted response to vitamin D in uremia. Kidney Int Suppl. 2001;78:S182–5.

    Article  CAS  PubMed  Google Scholar 

  58. Brumbaugh PF, Haussler MR. 1 Alpha,25-dihydroxycholecalciferol receptors in intestine. I. Association of 1 alpha,25-dihydroxycholecalciferol with intestinal mucosa chromatin. J Biol Chem. 1974;249:1251–7.

    CAS  PubMed  Google Scholar 

  59. Lawson DE, Wilson PW. Intranuclear localization and receptor proteins for 1,25-dihydroxycholecalciferol in chick intestine. Biochem J. 1974;144:573–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brumbaugh PF, Haussler MR. Specific binding of 1alpha,25-dihydroxycholecalciferol to nuclear components of chick intestine. J Biol Chem. 1975;250:1588–94.

    CAS  PubMed  Google Scholar 

  61. Hsu CH, Patel SR. Uremic toxins and vitamin D metabolism. Kidney Int Suppl. 1997;62:S65–8.

    CAS  PubMed  Google Scholar 

  62. Pike JW, Haussler MR. Purification of chicken intestinal receptor for 1,25-dihydroxyvitamin D. Proc Natl Acad Sci U S A. 1979;76:5485–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Polly P, Herdick M, Moehren U, et al. VDR-Alien: a novel, DNA-selective vitamin D(3) receptor-corepressor partnership. FASEB J Off Publ Fed Am Soc Exp Biol. 2000;14:1455–63.

    CAS  Google Scholar 

  64. Valdivielso JM, Fernandez E. Vitamin D receptor polymorphisms and diseases. Clin Chim Acta. 2006;371:1–12.

    Article  CAS  PubMed  Google Scholar 

  65. Alvarez-Hernandez D, Naves-Diaz M, Gomez-Alonso C, et al. Tissue-specific effect of VDR gene polymorphisms on the response to calcitriol. J Nephrol. 2008;21:843–9.

    CAS  PubMed  Google Scholar 

  66. Negri AL, Brandenburg VM. Calcitriol resistance in hemodialysis patients with secondary hyperparathyroidism. Int Urol Nephrol. 2014;46:1145–51.

    Article  CAS  PubMed  Google Scholar 

  67. Marco MP, Martinez I, Amoedo ML, et al. Vitamin D receptor genotype influences parathyroid hormone and calcitriol levels in predialysis patients. Kidney Int. 1999;56:1349–53.

    Article  CAS  PubMed  Google Scholar 

  68. Marco MP, Martinez I, Betriu A, et al. Influence of Bsml vitamin D receptor gene polymorphism on the response to a single bolus of calcitrol in hemodialysis patients. Clin Nephrol. 2001;56:111–6.

    CAS  PubMed  Google Scholar 

  69. Borras M, Torregrossa V, Oliveras A, et al. BB genotype of the vitamin D receptor gene polymorphism postpones parathyroidectomy in hemodialysis patients. J Nephrol. 2003;16:116–20.

    CAS  PubMed  Google Scholar 

  70. Bover J, Bosch RJ. Vitamin D receptor polymorphisms as a determinant of bone mass and PTH secretion: from facts to controversies. Nephrol Dial Transplant. 1999;14:1066–8.

    Article  CAS  PubMed  Google Scholar 

  71. Alvarez-Hernandez D, Naves M, Santamaria I, et al. Response of parathyroid glands to calcitriol in culture: is this response mediated by the genetic polymorphisms in vitamin D receptor? Kidney Int Suppl. 2003;63:S19–22.

    Article  Google Scholar 

  72. Green S, Walter P, Kumar V, et al. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature. 1986;320:134–9.

    Article  CAS  PubMed  Google Scholar 

  73. Natacha Rochel DM. Structural basis for ligand activity in VDR. In: Vitamin D. 3rd ed. Oxford, UK: Elsevier; 2011. p. 171191.

    Google Scholar 

  74. Hsu CH, Patel S, Young EW, et al. Production and degradation of calcitriol in renal failure rats. Am J Physiol. 1987;253:F1015–9.

    CAS  PubMed  Google Scholar 

  75. Cyert MS. Regulation of nuclear localization during signaling. J Biol Chem. 2001;276:20805–8.

    Article  CAS  PubMed  Google Scholar 

  76. Umesono K, Murakami KK, Thompson CC, et al. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell. 1991;65:1255–66; 76b. Dowd DR, MacDonald PN. Coregulators of VDR-mediated gene expression. In: Vitamin D. 3rd ed. Elsevier; 2011, p. 193–210.

    Google Scholar 

  77. Thompson PD, Jurutka PW, Haussler CA, et al. Heterodimeric DNA binding by the vitamin D receptor and retinoid X receptors is enhanced by 1,25-dihydroxyvitamin D3 and inhibited by 9-cis-retinoic acid. Evidence for allosteric receptor interactions. J Biol Chem. 1998;273:8483–91.

    Article  CAS  PubMed  Google Scholar 

  78. Lemon BD, Fondell JD, Freedman LP. Retinoid X receptor: vitamin D3 receptor heterodimers promote stable preinitiation complex formation and direct 1,25-dihydroxyvitamin D3-dependent cell-free transcription. Mol Cell Biol. 1997;17:1923–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Greschik H, Moras D. Structure-activity relationship of nuclear receptor-ligand interactions. Curr Top Med Chem. 2003;3:1573–99.

    Article  CAS  PubMed  Google Scholar 

  80. Rochel N, Wurtz JM, Mitschler A, et al. The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell. 2000;5:173–9.

    Article  CAS  PubMed  Google Scholar 

  81. Yamamoto K, Anami Y, Itoh T. Development of vitamin D analogs modulating the pocket structure of vitamin D receptor. Curr Top Med Chem. 2014;14:2378–87.

    Article  CAS  PubMed  Google Scholar 

  82. Moras D, Gronemeyer H. The nuclear receptor ligand-binding domain: structure and function. Curr Opin Cell Biol. 1998;10:384–91.

    Article  CAS  PubMed  Google Scholar 

  83. Molnar F, Perakyla M, Carlberg C. Vitamin D receptor agonists specifically modulate the volume of the ligand-binding pocket. J Biol Chem. 2006;281:10516–26.

    Article  CAS  PubMed  Google Scholar 

  84. Carlberg C, Molnar F. Vitamin D receptor signaling and its therapeutic implications: genome-wide and structural view. Can J Physiol Pharmacol. 2015;93:311–8.

    Article  CAS  PubMed  Google Scholar 

  85. Kerner SA, Scott RA, Pike JW. Sequence elements in the human osteocalcin gene confer basal activation and inducible response to hormonal vitamin D3. Proc Natl Acad Sci U S A. 1989;86:4455–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Diane R, Dowd PNM. Corregulators of VDR-mediated gene expression. In: Vitamin D. 3rd ed. Oxford, UK: Elsevier; 2011. p. 193–209.

    Google Scholar 

  87. Toell A, Polly P, Carlberg C. All natural DR3-type vitamin D response elements show a similar functionality in vitro. Biochem J. 2000;352(Pt 2):301–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Van den Bemd G-JCM, Jhamai M, Staal A, et al. A central dinucleotide within vitamin D response elements modulates DNA binding and transactivation by the vitamin D receptor in cellular response to natural and synthetic ligands. J Biol Chem. 2002;277:14539–46.

    PubMed  Google Scholar 

  89. Staal A, van Wijnen AJ, Birkenhager JC, et al. Distinct conformations of vitamin D receptor/retinoid X receptor-alpha heterodimers are specified by dinucleotide differences in the vitamin D-responsive elements of the osteocalcin and osteopontin genes. Mol Endocrinol. 1996;10:1444–56.

    CAS  PubMed  Google Scholar 

  90. White JH. Profiling 1,25-dihydroxyvitamin D3-regulated gene expression by microarray analysis. J Steroid Biochem Mol Biol. 2004;89–90:239–44.

    Article  PubMed  CAS  Google Scholar 

  91. Kim M-S, Kondo T, Takada I, et al. DNA demethylation in hormone-induced transcriptional derepression. Nature. 2009;461:1007–12.

    Article  CAS  PubMed  Google Scholar 

  92. Llach F, Bover J. Renal osteodystrophies. In: Brenner BM, editor. The kidney. 6th ed. Philadelphia: WB Saunders Company; 2000. p. 2013–186.

    Google Scholar 

  93. Mackey SL, Heymont JL, Kronenberg HM, et al. Vitamin D receptor binding to the negative human parathyroid hormone vitamin D response element does not require the retinoid x receptor. Mol Endocrinol. 1996;10:298–305.

    CAS  PubMed  Google Scholar 

  94. Okazaki T, Nishimori S, Ogata E, et al. Vitamin D-dependent recruitment of DNA-PK to the chromatinized negative vitamin D response element in the PTHrP gene is required for gene repression by vitamin D. Biochem Biophys Res Commun. 2003;304:632–7.

    Article  CAS  PubMed  Google Scholar 

  95. Chen LC, Tarone R, Huynh M, et al. High dietary retinoic acid inhibits tumor promotion and malignant conversion in a two-stage skin carcinogenesis protocol using 7,12-dimethylbenz[a]anthracene as the initiator and mezerein as the tumor promoter in female SENCAR mice. Cancer Lett. 1995;95:113–8.

    Article  CAS  PubMed  Google Scholar 

  96. Meyer MB, Benkusky NA, Lee C-H, et al. Genomic determinants of gene regulation by 1,25-dihydroxyvitamin D3 during osteoblast-lineage cell differentiation. J Biol Chem. 2014;289:19539–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Long MD, Sucheston-Campbell LE, Campbell MJ. Vitamin D receptor and RXR in the post-genomic era. J Cell Physiol. 2015;230:758–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kozumenko A, Ohtake F, Fujiki R, Kato S. Epigenetic modifications in vitamin D receptor-mediated transrepression. In: Vitamin D. 3rd ed. Oxford, UK: Elsevier; 2011. p. 227–34.

    Google Scholar 

  99. Saccone D, Asani F, Bornman L. Regulation of the vitamin D receptor gene by environment, genetics and epigenetics. Gene. 2015;561:171–80.

    Article  CAS  PubMed  Google Scholar 

  100. Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily: the second decade. Cell. 1995;83:835–9.

    Article  CAS  PubMed  Google Scholar 

  101. Dusso AS. Kidney disease and vitamin D levels: 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and VDR activation. Kidney Int Suppl. 2011;1:136–41.

    Article  CAS  Google Scholar 

  102. McKenna NJ, Cooney AJ, DeMayo FJ, et al. Minireview: evolution of NURSA, the nuclear receptor signaling atlas. Mol Endocrinol. 2009;23:740–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Endo I. Current topics on vitamin D. Combined therapy of anti-resorptive drug and active vitamin D. Clin Calcium. 2015;25:433–8.

    CAS  PubMed  Google Scholar 

  104. Molnar F. Structural considerations of vitamin D signaling. Front Physiol. 2014;5:191.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ecker JR, Bickmore WA, Barroso I, et al. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

    Google Scholar 

  106. Seuter S, Heikkinen S, Carlberg C. Chromatin acetylation at transcription start sites and vitamin D receptor binding regions relates to effects of 1alpha,25-dihydroxyvitamin D3 and histone deacetylase inhibitors on gene expression. Nucleic Acids Res. 2013;41:110–24.

    Article  CAS  PubMed  Google Scholar 

  107. Onate SA, Tsai SY, Tsai MJ, et al. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science. 1995;270:1354–7.

    Article  CAS  PubMed  Google Scholar 

  108. Choi JK, Howe LJ. Histone acetylation: truth of consequences? Biochem Cell Biol. 2009;87:139–50.

    Article  CAS  PubMed  Google Scholar 

  109. Chakravarti D, LaMorte VJ, Nelson MC, et al. Role of CBP/P300 in nuclear receptor signalling. Nature. 1996;383:99–103.

    Article  CAS  PubMed  Google Scholar 

  110. Wang F, Marshall CB, Ikura M. Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cell Mol Life Sci. 2013;70:3989–4008.

    Article  CAS  PubMed  Google Scholar 

  111. Oda Y, Sihlbom C, Chalkley RJ, et al. Two distinct coactivators, DRIP/mediator and SRC/p160, are differentially involved in vitamin D receptor transactivation during keratinocyte differentiation. Mol Endocrinol. 2003;17:2329–39.

    Article  CAS  PubMed  Google Scholar 

  112. Varshney S, Bhadada SK, Sachdeva N, et al. Methylation status of the CpG islands in vitamin D and calcium-sensing receptor gene promoters does not explain the reduced gene expressions in parathyroid adenomas. J Clin Endocrinol Metab. 2013;98:E1631–5.

    Article  CAS  PubMed  Google Scholar 

  113. Rachez C, Freedman LP. Mediator complexes and transcription. Curr Opin Cell Biol. 2001;13:274–80.

    Article  CAS  PubMed  Google Scholar 

  114. Belakavadi M, Fondell JD. Role of the mediator complex in nuclear hormone receptor signaling. Rev Physiol Biochem Pharmacol. 2006;156:23–43.

    CAS  PubMed  Google Scholar 

  115. Barry JB, Leong GM, Church WB, et al. Interactions of SKIP/NCoA-62, TFIIB, and retinoid X receptor with vitamin D receptor helix H10 residues. J Biol Chem. 2003;278:8224–8.

    Article  CAS  PubMed  Google Scholar 

  116. Pathrose P, Barmina O, Chang C-Y, et al. Inhibition of 1,25-dihydroxyvitamin D3-dependent transcription by synthetic LXXLL peptide antagonists that target the activation domains of the vitamin D and retinoid X receptors. J Bone Miner Res. 2002;17:2196–205.

    Article  CAS  PubMed  Google Scholar 

  117. Wang X, Arai S, Song X, et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature. 2008;454:126–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang X, Song X, Glass CK, et al. The long arm of long noncoding RNAs: roles as sensors regulating gene transcriptional programs. Cold Spring Harb Perspect Biol. 2011;3:a003756.

    PubMed  PubMed Central  Google Scholar 

  119. Burakov D, Crofts LA, Chang C-PB, et al. Reciprocal recruitment of DRIP/mediator and p160 coactivator complexes in vivo by estrogen receptor. J Biol Chem. 2002;277:14359–62.

    Article  CAS  PubMed  Google Scholar 

  120. Issa LL, Leong GM, Sutherland RL, et al. Vitamin D analogue-specific recruitment of vitamin D receptor coactivators. J Bone Miner Res. 2002;17:879–90.

    Article  CAS  PubMed  Google Scholar 

  121. Mizwicki MT, Norman AW. Vitamin D sterol/VDR conformational dynamics and nongenomis actions. In: Vitamin D. 3rd ed. Oxford, UK: Elsevier; 2011. p. 271–97.

    Google Scholar 

  122. Nemere I, Hintze K. Novel hormone “receptors”. J Cell Biochem. 2008;103:401–7.

    Article  CAS  PubMed  Google Scholar 

  123. Gallieni M, Kamimura S, Ahmed A, et al. Kinetics of monocyte 1 alpha-hydroxylase in renal failure. Am J Physiol. 1995;268:F746–53.

    CAS  PubMed  Google Scholar 

  124. Malinen M, Saramaki A, Ropponen A, et al. Distinct HDACs regulate the transcriptional response of human cyclin-dependent kinase inhibitor genes to trichostatin A and 1alpha,25-dihydroxyvitamin D3. Nucleic Acids Res. 2008;36:121–32.

    Article  CAS  PubMed  Google Scholar 

  125. Dobrzynski M, Bruggeman FJ. Elongation dynamics shape bursty transcription and translation. Proc Natl Acad Sci U S A. 2009;106:2583–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Peleg S, Nguyen CV. The importance of nuclear import in protection of the vitamin D receptor from polyubiquitination and proteasome-mediated degradation. J Cell Biochem. 2010;110:926–34.

    Article  CAS  PubMed  Google Scholar 

  127. Cozzolino M, Stucchi A, Rizzo MA, et al. Vitamin D receptor activation and prevention of arterial ageing. Nutr Metab Cardiovasc Dis. 2012;22:547–52.

    Article  CAS  PubMed  Google Scholar 

  128. Xu SS, Alam S, Margariti A. Epigenetics in vascular disease - therapeutic potential of new agents. Curr Vasc Pharmacol. 2014;12:77–86.

    Article  CAS  PubMed  Google Scholar 

  129. Fukagawa M, Kaname S, Igarashi T, et al. Regulation of parathyroid hormone synthesis in chronic renal failure in rats. Kidney Int. 1991;39:874–81.

    Article  CAS  PubMed  Google Scholar 

  130. Helvig CF, Cuerrier D, Hosfield CM, et al. Dysregulation of renal vitamin D metabolism in the uremic rat. Kidney Int. 2010;78:463–72.

    Article  CAS  PubMed  Google Scholar 

  131. Hsu CH, Patel SR. Altered vitamin D metabolism and receptor interaction with the target genes in renal failure: calcitriol receptor interaction with its target gene in renal failure. Curr Opin Nephrol Hypertens. 1995;4:302–6.

    Article  CAS  PubMed  Google Scholar 

  132. Bover J, Rodriguez M, Trinidad P, et al. Factors in the development of secondary hyperparathyroidism during graded renal failure in the rat. Kidney Int. 1994;45:953–61.

    Article  CAS  PubMed  Google Scholar 

  133. Bover J, Jara A, Trinidad P, et al. The calcemic response to PTH in the rat: effect of elevated PTH levels and uremia. Kidney Int. 1994;46:310–7.

    Article  CAS  PubMed  Google Scholar 

  134. DeFronzo RA, Alvestrand A, Smith D, et al. Insulin resistance in uremia. J Clin Invest. 1981;67:563–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Blum WF, Ranke MB, Kietzmann K, et al. Growth hormone resistance and inhibition of somatomedin activity by excess of insulin-like growth factor binding protein in uraemia. Pediatr Nephrol. 1991;5:539–44.

    Article  CAS  PubMed  Google Scholar 

  136. Lim K, Lu T-S, Molostvov G, et al. Vascular klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation. 2012;125:2243–55.

    Article  CAS  PubMed  Google Scholar 

  137. Kazama JJ, Sato F, Omori K, et al. Pretreatment serum FGF-23 levels predict the efficacy of calcitriol therapy in dialysis patients. Kidney Int. 2005;67:1120–5.

    Article  CAS  PubMed  Google Scholar 

  138. Vulpio C, Maresca G, Distasio E, et al. Switch from calcitriol to paricalcitol in secondary hyperparathyroidism of hemodialysis patients: responsiveness is related to parathyroid gland size. Hemodial Int. 2011;15:69–78.

    Article  PubMed  Google Scholar 

  139. Manolagas SC, Yu XP, Girasole G, et al. Vitamin D and the hematolymphopoietic tissue: a 1994 update. Semin Nephrol. 1994;14:129–43.

    CAS  PubMed  Google Scholar 

  140. Hsu CH, Patel SR, Young EW, et al. The biological action of calcitriol in renal failure. Kidney Int. 1994;46:605–12.

    Article  CAS  PubMed  Google Scholar 

  141. Fukuda N, Tanaka H, Tominaga Y, et al. Decreased 1,25-dihydroxyvitamin D3 receptor density is associated with a more severe form of parathyroid hyperplasia in chronic uremic patients. J Clin Invest. 1993;92:1436–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Patel SR, Ke HQ, Vanholder R, et al. Inhibition of nuclear uptake of calcitriol receptor by uremic ultrafiltrate. Kidney Int. 1994;46:129–33.

    Article  CAS  PubMed  Google Scholar 

  143. Walling MW, Kimberg DV, Wasserman RH, et al. Duodenal active transport of calcium and phosphate in vitamin D-deficient rats: effects of nephrectomy, Cestrum diurnum, and 1alpha,25-dihydroxyvitamin D3. Endocrinology. 1976;98:1130–4.

    Article  CAS  PubMed  Google Scholar 

  144. Baker LR, Abrams L, Roe CJ, et al. 1,25(OH)2D3 administration in moderate renal failure: a prospective double-blind trial. Kidney Int. 1989;35:661–9.

    Article  CAS  PubMed  Google Scholar 

  145. Toell A, Degenhardt S, Grabensee B, et al. Inhibitory effect of uremic solutions on protein-DNA-complex formation of the vitamin D receptor and other members of the nuclear receptor superfamily. J Cell Biochem. 1999;74:386–94.

    Article  CAS  PubMed  Google Scholar 

  146. Patel SR, Ke HQ, Vanholder R, et al. Inhibition of calcitriol receptor binding to vitamin D response elements by uremic toxins. J Clin Invest. 1995;96:50–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jurutka PW, Hsieh JC, MacDonald PN, et al. Phosphorylation of serine 208 in the human vitamin D receptor. The predominant amino acid phosphorylated by casein kinase II, in vitro, and identification as a significant phosphorylation site in intact cells. J Biol Chem. 1993;268:6791–9.

    CAS  PubMed  Google Scholar 

  148. Cake MH, DiSorbo DM, Litwack G. Effect of pyridoxal phosphate on the DNA binding site of activated hepatic glucocorticoid receptor. J Biol Chem. 1978;253:4886–91.

    CAS  PubMed  Google Scholar 

  149. Reinhardt TA, Horst RL. Parathyroid hormone down-regulates 1,25-dihydroxyvitamin D receptors (VDR) and VDR messenger ribonucleic acid in vitro and blocks homologous up-regulation of VDR in vivo. Endocrinology. 1990;127:942–8.

    Article  CAS  PubMed  Google Scholar 

  150. Chen TL, Li JM, Ye TV, et al. Hormonal responses to 1,25-dihydroxyvitamin D3 in cultured mouse osteoblast-like cells--modulation by changes in receptor level. J Cell Physiol. 1986;126:21–8.

    Article  CAS  PubMed  Google Scholar 

  151. Hsu CH, Patel SR, Vanholder R. Mechanism of decreased intestinal calcitriol receptor concentration in renal failure. Am J Physiol. 1993;264:F662–9.

    CAS  PubMed  Google Scholar 

  152. Korkor AB. Reduced binding of [3H]1,25-dihydroxyvitamin D3 in the parathyroid glands of patients with renal failure. N Engl J Med. 1987;316:1573–7.

    Article  CAS  PubMed  Google Scholar 

  153. Brown AJ, Dusso A, Lopez-Hilker S, et al. 1,25-(OH)2D receptors are decreased in parathyroid glands from chronically uremic dogs. Kidney Int. 1989;35:19–23.

    Article  CAS  PubMed  Google Scholar 

  154. Merke J, Hugel U, Zlotkowski A, et al. Diminished parathyroid 1,25(OH)2D3 receptors in experimental uremia. Kidney Int. 1987;32:350–3.

    Article  CAS  PubMed  Google Scholar 

  155. De Francisco ALM, Olmos JM, Martinez J. Calcitriol receptors after correction of uremia (Abstract). In: XII international congress of nephrology, Jerusalem; 1993.

    Google Scholar 

  156. Hirst M, Feldman D. Regulation of 1,25(OH)2 vitamin D3 receptor content in cultured LLC-PK1 kidney cells limits hormonal responsiveness. Biochem Biophys Res Commun. 1983;116:121–7.

    Article  CAS  PubMed  Google Scholar 

  157. Szabo A, Merke J, Thomasset M, et al. No decrease of 1,25(OH)2D3 receptors and duodenal calbindin-D9k in uraemic rats. Eur J Clin Invest. 1991;21:521–6.

    Article  CAS  PubMed  Google Scholar 

  158. Szabó A, Ritz E, Schmidt-Gayk H, et al. Abnormal expression and regulation of vitamin D receptor in experimental uremia. Nephron. 1996;73:619–28.

    PubMed  Google Scholar 

  159. Naveh-Many T, Marx R, Keshet E, et al. Regulation of 1,25-dihydroxyvitamin D3 receptor gene expression by 1,25-dihydroxyvitamin D3 in the parathyroid in vivo. J Clin Invest. 1990;86:1968–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Costa EM, Feldman D. Homologous up-regulation of the 1,25 (OH)2 vitamin D3 receptor in rats. Biochem Biophys Res Commun. 1986;137:742–7.

    Article  CAS  PubMed  Google Scholar 

  161. Patel SR, Ke HQ, Hsu CH. Regulation of calcitriol receptor and its mRNA in normal and renal failure rats. Kidney Int. 1994;45:1020–7.

    Article  CAS  PubMed  Google Scholar 

  162. Lopez I, Aguilera-Tejero E, Mendoza FJ, et al. Calcimimetic R-568 decreases extraosseous calcifications in uremic rats treated with calcitriol. J Am Soc Nephrol. 2006;17:795–804.

    Article  CAS  PubMed  Google Scholar 

  163. Canalejo R, Canalejo A, Martinez-Moreno JM, et al. FGF23 fails to inhibit uremic parathyroid glands. J Am Soc Nephrol. 2010;21:1125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Brown AJ, Zhong M, Finch J, et al. The roles of calcium and 1,25-dihydroxyvitamin D3 in the regulation of vitamin D receptor expression by rat parathyroid glands. Endocrinology. 1995;136:1419–25.

    CAS  PubMed  Google Scholar 

  165. Denda M, Finch J, Brown AJ, et al. 1,25-dihydroxyvitamin D3 and 22-oxacalcitriol prevent the decrease in vitamin D receptor content in the parathyroid glands of uremic rats. Kidney Int. 1996;50:34–9.

    Article  CAS  PubMed  Google Scholar 

  166. Wiese RJ, Uhland-Smith A, Ross TK, et al. Up-regulation of the vitamin D receptor in response to 1,25-dihydroxyvitamin D3 results from ligand-induced stabilization. J Biol Chem. 1992;267:20082–6.

    CAS  PubMed  Google Scholar 

  167. Brown AJ, Berkoben M, Ritter CS, et al. Binding and metabolism of 1,25-dihydroxyvitamin D3 in cultured bovine parathyroid cells. Endocrinology. 1992;130:276–81.

    CAS  PubMed  Google Scholar 

  168. Goff JP, Reinhardt TA, Beckman MJ, et al. Contrasting effects of exogenous 1,25-dihydroxyvitamin D [1,25-(OH)2D] versus endogenous 1,25-(OH)2D, induced by dietary calcium restriction, on vitamin D receptors. Endocrinology. 1990;126:1031–5.

    Article  CAS  PubMed  Google Scholar 

  169. Garfia B, Canadillas S, Canalejo A, et al. Regulation of parathyroid vitamin D receptor expression by extracellular calcium. J Am Soc Nephrol. 2002;13:2945–52.

    Article  CAS  PubMed  Google Scholar 

  170. Mendoza FJ, Lopez I, Canalejo R, et al. Direct upregulation of parathyroid calcium-sensing receptor and vitamin D receptor by calcimimetics in uremic rats. Am J Physiol Renal Physiol. 2009;296:F605–13.

    Article  CAS  PubMed  Google Scholar 

  171. Russell J, Bar A, Sherwood LM, et al. Interaction between calcium and 1,25-dihydroxyvitamin D3 in the regulation of preproparathyroid hormone and vitamin D receptor messenger ribonucleic acid in avian parathyroids. Endocrinology. 1993;132:2639–44.

    CAS  PubMed  Google Scholar 

  172. Sela-Brown A, Russell J, Koszewski NJ, et al. Calreticulin inhibits vitamin D′s action on the PTH gene in vitro and may prevent vitamin D′s effect in vivo in hypocalcemic rats. Mol Endocrinol. 1998;12:1193–200.

    CAS  PubMed  Google Scholar 

  173. Carrillo-Lopez N, Alvarez-Hernandez D, Gonzalez-Suarez I, et al. Simultaneous changes in the calcium-sensing receptor and the vitamin D receptor under the influence of calcium and calcitriol. Nephrol Dial Transplant. 2008;23:3479–84.

    Article  CAS  PubMed  Google Scholar 

  174. Kumar R. Abnormalities of the vitamin D receptor in uraemia. Nephrol Dial Transplant. 1996;11 Suppl 3:6–10.

    Article  CAS  PubMed  Google Scholar 

  175. Sandgren ME, DeLuca HF. Serum calcium and vitamin D regulate 1,25-dihydroxyvitamin D3 receptor concentration in rat kidney in vivo. Proc Natl Acad Sci U S A. 1990;87:4312–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Canadillas S, Canalejo R, Rodriguez-Ortiz ME, et al. Upregulation of parathyroid VDR expression by extracellular calcium is mediated by ERK1/2-MAPK signaling pathway. AJP Ren Physiol. 2010;298:F1197–204.

    Article  CAS  Google Scholar 

  177. Rodriguez ME, Almaden Y, Canadillas S, et al. The calcimimetic R-568 increases vitamin D receptor expression in rat parathyroid glands. Am J Physiol Renal Physiol. 2007;292:F1390–5.

    Article  CAS  PubMed  Google Scholar 

  178. Bover J, Ureña P, Ruiz-García C, et al. Clinical and practical use of calcimimetics in dialysis patients with secondary hyperparathyroidism. Clin J Am Soc Nephrol. 2016;11:161–74.

    Google Scholar 

  179. Gogusev J, Duchambon P, Hory B, et al. Depressed expression of calcium receptor in parathyroid gland tissue of patients with hyperparathyroidism. Kidney Int. 1997;51:328–36.

    Article  CAS  PubMed  Google Scholar 

  180. Carrillo-López N, Fernández-Martín JL, Cannata-Andía JB. The role of calcium, calcitriol and their receptors in parathyroid regulation. Nefrologia. 2009;29:103–8.

    PubMed  Google Scholar 

  181. Piecha G, Kokeny G, Nakagawa K, et al. Calcimimetic R-568 or calcitriol: equally beneficial on progression of renal damage in subtotally nephrectomized rats. Am J Physiol Renal Physiol. 2008;294:F748–57.

    Article  CAS  PubMed  Google Scholar 

  182. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, et al. The parathyroid is a target organ for FGF23 in rats. J Clin Invest. 2007;117:4003–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Komaba H, Goto S, Fujii H, et al. Depressed expression of klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients. Kidney Int. 2010;77:232–8.

    Article  CAS  PubMed  Google Scholar 

  184. Olauson H, Vervloet MG, Cozzolino M, et al. New insights into the FGF23-Klotho axis. Semin Nephrol. 2014;34:586–97.

    Article  CAS  PubMed  Google Scholar 

  185. Latus J, Lehmann R, Roesel M, et al. Analysis of α-klotho, fibroblast growth factor-, vitamin-D and calcium-sensing receptor in 70 patients with secondary hyperparathyroidism. Kidney Blood Press Res. 2013;37:84–94.

    Article  CAS  PubMed  Google Scholar 

  186. Forster RE, Jurutka PW, Hsieh J-C, et al. Vitamin D receptor controls expression of the anti-aging klotho gene in mouse and human renal cells. Biochem Biophys Res Commun. 2011;414:557–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Arcidiacono MV, Yang J, Fernandez E, et al. The induction of C/EBPβ contributes to vitamin D inhibition of ADAM17 expression and parathyroid hyperplasia in kidney disease. Nephrol Dial Transplant. 2015;30:423–33.

    Article  PubMed  Google Scholar 

  188. Arcidiacono MV, Yang J, Fernandez E, et al. Parathyroid-specific epidermal growth factor-receptor inactivation prevents uremia-induced parathyroid hyperplasia in mice. Nephrol Dial Transplant. 2015;30:434–40.

    Article  PubMed  Google Scholar 

  189. Somjen D, Knoll E, Sharon O, et al. Calciotrophic hormones and hyperglycemia modulate vitamin D receptor and 25 hydroxyy vitamin D 1-α hydroxylase mRNA expression in human vascular smooth muscle cells. J Steroid Biochem Mol Biol. 2015;148:210–3.

    Article  CAS  PubMed  Google Scholar 

  190. Bachmann S, Schlichting U, Geist B, et al. Kidney-specific inactivation of the megalin gene impairs trafficking of renal inorganic sodium phosphate cotransporter (NaPi-IIa). J Am Soc Nephrol. 2004;15:892–900.

    Article  CAS  PubMed  Google Scholar 

  191. Takemoto F, Shinki T, Yokoyama K, et al. Gene expression of vitamin D hydroxylase and megalin in the remnant kidney of nephrectomized rats. Kidney Int. 2003;64:414–20.

    Article  CAS  PubMed  Google Scholar 

  192. Andress DL. Adynamic bone in patients with chronic kidney disease. Kidney Int. 2008;73:1345–54.

    Article  CAS  PubMed  Google Scholar 

  193. Lee SM, Bishop KA, Goellner JJ, et al. Mouse and human BAC transgenes recapitulate tissue-specific expression of the vitamin D receptor in mice and rescue the VDR-null phenotype. Endocrinology. 2014;155:2064–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Brown AJ, Ritter CS, Knutson JC, et al. The vitamin D prodrugs 1alpha(OH)D2, 1alpha(OH)D3 and BCI-210 suppress PTH secretion by bovine parathyroid cells. Nephrol Dial Transplant. 2006;21:644–50.

    Article  CAS  PubMed  Google Scholar 

  195. Ritter CS, Armbrecht HJ, Slatopolsky E, et al. 25-hydroxyvitamin D(3) suppresses PTH synthesis and secretion by bovine parathyroid cells. Kidney Int. 2006;70:654–9.

    Article  CAS  PubMed  Google Scholar 

  196. Ritter CS, Brown AJ. Direct suppression of Pth gene expression by the vitamin D prohormones doxercalciferol and calcidiol requires the vitamin D receptor. J Mol Endocrinol. 2011;46:63–6.

    CAS  PubMed  Google Scholar 

  197. Slatopolsky E, Brown AJ. Vitamin D analogs for the treatment of secondary hyperparathyroidism. Blood Purif. 2002;20:109–12.

    Article  CAS  PubMed  Google Scholar 

  198. Brown AJ, Finch J, Slatopolsky E. Differential effects of 19-nor-1,25-dihydroxyvitamin D(2) and 1,25-dihydroxyvitamin D(3) on intestinal calcium and phosphate transport. J Lab Clin Med. 2002;139:279–84.

    Article  CAS  PubMed  Google Scholar 

  199. Bover J, Dasilva I, Furlano M, et al. Clinical uses of 1,25-dihydroxy-19-nor-vitamin D(2) (Paricalcitol). Curr Vasc Pharmacol. 2014;12:313–23.

    Article  CAS  PubMed  Google Scholar 

  200. Malluche HH, Mawad H, Monier-Faugere M-C. Effects of treatment of renal osteodystrophy on bone histology. Clin J Am Soc Nephrol. 2008;3 Suppl 3:S157–63.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Lopez I, Mendoza FJ, Aguilera-Tejero E, et al. The effect of calcitriol, paricalcitol, and a calcimimetic on extraosseous calcifications in uremic rats. Kidney Int. 2008;73:300–7.

    Article  CAS  PubMed  Google Scholar 

  202. Lomashvili KA, Wang X, O’Neill WC. Role of local versus systemic vitamin D receptors in vascular calcification. Arterioscler Thromb Vasc Biol. 2014;34:146–51.

    Article  CAS  PubMed  Google Scholar 

  203. Han T, Rong G, Quan D, et al. Meta-analysis: the efficacy and safety of paricalcitol for the treatment of secondary hyperparathyroidism and proteinuria in chronic kidney disease. Biomed Res Int. 2013;2013:320560.

    Google Scholar 

  204. Mathew S, Lund RJ, Chaudhary LR, et al. Vitamin D receptor activators can protect against vascular calcification. J Am Soc Nephrol. 2008;19:1509–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Ritter CS, Zhang S, Delmez J, et al. Differential expression and regulation of Klotho by paricalcitol in the kidney, parathyroid, and aorta of uremic rats. Kidney Int. 2015;87:1141–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Mizobuchi M, Finch JL, Martin DR, et al. Differential effects of vitamin D receptor activators on vascular calcification in uremic rats. Kidney Int. 2007;72:709–15.

    Article  CAS  PubMed  Google Scholar 

  207. Bover J, Evenepoel P, Urena-Torres P, et al. Pro: cardiovascular calcifications are clinically relevant. Nephrol Dial Transplant. 2015;30:345–51.

    Article  PubMed  Google Scholar 

  208. Teng M, Wolf M, Lowrie E, et al. Survival of patients undergoing hemodialysis with paricalcitol or calcitriol therapy. N Engl J Med. 2003;349:446–56.

    Article  CAS  PubMed  Google Scholar 

  209. Vervloet MG, Twisk JWR. Mortality reduction by vitamin D receptor activation in end-stage renal disease: a commentary on the robustness of current data. Nephrol Dial Transplant. 2009;24:703–6.

    Article  CAS  PubMed  Google Scholar 

  210. Tentori F, Albert JM, Young EW, et al. The survival advantage for haemodialysis patients taking vitamin D is questioned: findings from the Dialysis Outcomes and Practice Patterns Study. Nephrol Dial Transplant. 2009;24:963–72.

    Article  CAS  PubMed  Google Scholar 

  211. Duranton F, Rodriguez-Ortiz ME, Duny Y, et al. Vitamin D treatment and mortality in chronic kidney disease: a systematic review and meta-analysis. Am J Nephrol. 2013;37:239–48.

    Article  CAS  PubMed  Google Scholar 

  212. Mann MC, Hobbs AJ, Hemmelgarn BR, et al. Effect of oral vitamin D analogs on mortality and cardiovascular outcomes among adults with chronic kidney disease: a meta-analysis. Clin Kidney J. 2015;8:41–8.

    Article  PubMed  Google Scholar 

  213. Bond TC, Wilson S, Moran J, et al. Mortality rates do not differ among patients prescribed various vitamin D agents. Perit Dial Int. 2015;35:62–9.

    Google Scholar 

  214. Morrone LF, Cozzolino M. The beneficial impact of vitamin D treatment in CKD patients: what’s next? Clin Kidney J. 2015;8:38–40.

    Article  PubMed  Google Scholar 

  215. Kobayashi T, Okano T, Tsugawa N, et al. Metabolism and transporting system of 22-oxacalcitriol. Contrib Nephrol. 1991;91:129–33.

    Article  CAS  PubMed  Google Scholar 

  216. Slatopolsky E, Finch J, Brown A. New vitamin D analogs. Kidney Int Suppl. 2003;62:S83–7.

    Google Scholar 

  217. Nakane M, Ma J, Rose AE, et al. Differential effects of vitamin D analogs on calcium transport. J Steroid Biochem Mol Biol. 2007;103:84–9.

    Article  CAS  PubMed  Google Scholar 

  218. Carlberg C, Quack M, Herdick M, et al. Central role of VDR conformations for understanding selective actions of vitamin D(3) analogues. Steroids. 2001;66:213–21.

    Google Scholar 

  219. Bover J, Egido J, Fernández-Giráldez E, et al. Vitamin D, vitamin D receptor and the importance of its activation in patients with chronic kidney disease. Nefrologia. 2015;35:28–41.

    PubMed  Google Scholar 

  220. Bover J, Cozzolino M. Mineral and bone disorders in chronic kidney disease and end-stage renal disease patients: new insights into vitamin D receptor activation. Kidney Int Suppl. 2011;1:122–9.

    Article  CAS  Google Scholar 

  221. Martínez-Moreno JM, Muñoz-Castañeda JR, Herencia C, et al. In vascular smooth muscle cells paricalcitol prevents phosphate-induced Wnt/β-catenin activation. Am J Physiol Renal Physiol. 2012;303:F1136–44.

    Article  PubMed  CAS  Google Scholar 

  222. Kalantar-Zadeh K. Survival differences between activated injectable vitamin D2 and D3 analogs. Kidney Int. 2007;71:827; author reply 827–8.

    Article  CAS  PubMed  Google Scholar 

  223. Llach F, Yudd M. Paricalcitol in dialysis patients with calcitriol-resistant secondary hyperparathyroidism. Am J Kidney Dis. 2001;38:S45–50.

    Article  CAS  PubMed  Google Scholar 

  224. Rodriguez M, Martinez-Moreno JM, Rodríguez-Ortiz ME, et al. Vitamin D and vascular calcification in chronic kidney disease. Kidney Blood Press Res. 2011;34:261–8.

    Article  CAS  PubMed  Google Scholar 

  225. Nigwekar SU, Bhan I, Turchin A, et al. Statin use and calcific uremic arteriolopathy: a matched case-control study. Am J Nephrol. 2013;37:325–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Wu-Wong JR, Li X, Chen Y-W. Different vitamin D receptor agonists exhibit differential effects on endothelial function and aortic gene expression in 5/6 nephrectomized rats. J Steroid Biochem Mol Biol. 2015;148:202–9.

    Article  CAS  PubMed  Google Scholar 

  227. Zoccali C, Curatola G, Panuccio V, et al. Paricalcitol and endothelial function in chronic kidney disease trial. Hypertension. 2014;64:1005–11.

    Article  CAS  PubMed  Google Scholar 

  228. Thethi TK, Bajwa MA, Ghanim H, et al. Effect of paricalcitol on endothelial function and inflammation in type 2 diabetes and chronic kidney disease. J Diabetes Complications. 2015;29:433–7.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Pilz S, Gaksch M, Kienreich K, et al. Effects of vitamin D on blood pressure and cardiovascular risk factors: a randomized controlled trial. Hypertension. 2015;65:1195–201.

    Article  CAS  PubMed  Google Scholar 

  230. Van Ballegooijen AJ, Gansevoort RT, Lambers-Heerspink HJ, et al. Plasma 1,25-dihydroxyvitamin D and the risk of developing hypertension: the prevention of renal and vascular end-stage disease study. Hypertension. 2015;66:563–70.

    Article  PubMed  CAS  Google Scholar 

  231. Diez ER, Altamirano LB, García IM, et al. Heart remodeling and ischemia-reperfusion arrhythmias linked to myocardial vitamin d receptors deficiency in obstructive nephropathy are reversed by paricalcitol. J Cardiovasc Pharmacol Ther. 2015;20:211–20.

    Article  CAS  PubMed  Google Scholar 

  232. Panizo S, Barrio-Vázquez S, Naves-Díaz M, et al. Vitamin D receptor activation, left ventricular hypertrophy and myocardial fibrosis. Nephrol Dial Transplant. 2013;28:2735–44.

    Article  CAS  PubMed  Google Scholar 

  233. Repo JM, Rantala IS, Honkanen TT, et al. Paricalcitol aggravates perivascular fibrosis in rats with renal insufficiency and low calcitriol. Kidney Int. 2007;72:977–84.

    Article  CAS  PubMed  Google Scholar 

  234. Sezer S, Tutal E, Bal Z, et al. Differential influence of vitamin D analogs on left ventricular mass index in maintenance hemodialysis patients. Int J Artif Organs. 2014;37:118–25.

    Article  PubMed  CAS  Google Scholar 

  235. Li X-H, Feng L, Yang Z-H, et al. The effect of active vitamin D on cardiovascular outcomes in predialysis chronic kidney diseases: a systematic review and meta-analysis. Nephrology (Carlton). 2015;20:706–14.

    Google Scholar 

  236. Zerr P, Vollath S, Palumbo-Zerr K, et al. Vitamin D receptor regulates TGF-β signalling in systemic sclerosis. Ann Rheum Dis. 2015;74:e20.

    Article  PubMed  CAS  Google Scholar 

  237. González-Mateo GT, Fernández-Míllara V, Bellón T, et al. Paricalcitol reduces peritoneal fibrosis in mice through the activation of regulatory T cells and reduction in IL-17 production. PLoS One. 2014;9:e108477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Park CW, Oh YS, Shin YS, et al. Intravenous calcitriol regresses myocardial hypertrophy in hemodialysis patients with secondary hyperparathyroidism. Am J Kidney Dis. 1999;33:73–81.

    Article  CAS  PubMed  Google Scholar 

  239. Lemmilä S, Saha H, Virtanen V, et al. Effect of intravenous calcitriol on cardiac systolic and diastolic function in patients on hemodialysis. Am J Nephrol. 1998;18:404–10.

    Article  PubMed  Google Scholar 

  240. Kim HW, Park CW, Shin YS, et al. Calcitriol regresses cardiac hypertrophy and QT dispersion in secondary hyperparathyroidism on hemodialysis. Nephron Clin Pract. 2006;102:c21–9.

    Article  PubMed  Google Scholar 

  241. Bodyak N, Ayus JC, Achinger S, et al. Activated vitamin D attenuates left ventricular abnormalities induced by dietary sodium in Dahl salt-sensitive animals. Proc Natl Acad Sci U S A. 2007;104:16810–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Thadhani R, Appelbaum E, Pritchett Y, et al. Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: the PRIMO randomized controlled trial. JAMA. 2012;307:674–84.

    Article  CAS  PubMed  Google Scholar 

  243. Wang AY-M, Fang F, Chan J, et al. Effect of paricalcitol on left ventricular mass and function in CKD – the OPERA trial. J Am Soc Nephrol. 2014;25:175–86.

    Article  CAS  PubMed  Google Scholar 

  244. Tamez H, Zoccali C, Packham D, et al. Vitamin D reduces left atrial volume in patients with left ventricular hypertrophy and chronic kidney disease. Am Heart J. 2012;164:902–9.e2.

    Article  CAS  PubMed  Google Scholar 

  245. Wu-Wong JR, Chen Y-W, Wessale JL. Vitamin D receptor agonist VS-105 improves cardiac function in the presence of enalapril in 5/6 nephrectomized rats. Am J Physiol Renal Physiol. 2015;308:F309–19.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Bover MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bover, J., Ruiz, C.E., Pilz, S., Dasilva, I., Díaz, M.M., Guillén, E. (2016). Vitamin D Receptor and Interaction with DNA: From Physiology to Chronic Kidney Disease. In: Ureña Torres, P., Cozzolino, M., Vervloet, M. (eds) Vitamin D in Chronic Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-32507-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32507-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32505-7

  • Online ISBN: 978-3-319-32507-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics