Skip to main content

Vitamin D and FGF23 in Chronic Kidney Disease

  • Chapter
  • First Online:
Vitamin D in Chronic Kidney Disease
  • 913 Accesses

Abstract

The Fibroblast Growth Factor 23 (FGF23) has been identified less than 20 years ago. It rapidly appeared that FGF23 was not only the hormone that control phosphate homeostasis but also the metabolism of the active form of vitamin D, calcitriol. FGF23, by contrast with many other FGF belongs to the small hormone-like FGF sub-family with FGF15/19 and FGF21. FGF23 is secretes by osteocytes and osteoblasts in response to high phosphate or calcitriol levels. FGF23 inhibits the expression of renal sodium phosphate transporters, which augments phosphate excretion in urine. FGF23 also stimulates the expression of the enzyme that inactivates calcitriol, the CYP24A1, and lowers the expression of CYP27B1, which converts 25(OH) vitamin D into calcitriol. Hence FGF23 controls calcitriol levels in plasma. By decreasing calcitriol levels FGF23 indirectly diminishes intestinal phosphate absorption. Calcitriol directly stimulates FGF23 production in osteocytes. The physiological action of FGF23 requires the expression at the cell surface of a FGFR and the co-receptor αklotho. αKlotho is mainly expressed in the kidney, brain, and in the muscle. Calcitriol stimulates αklotho expression. αKlotho can be released from the cell surface by cleavage producing a circulating protein the role of which is insufficiently delineated, see previous chapter. FGF23 concentration increases at the early steps of renal insufficiency to maintain plasma phosphate concentration within normal range. This participates to the genesis of secondary hyperparathyroidism. High concentrations of FGF23 induce cardiac hypertrophy despite the absence of klotho in cardiac tissue. The decrease in calcitriol concentration induced by FGF23 may contribute to its deleterious effect on heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ADHR Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet. 2000;26(3):345–8.

    Article  Google Scholar 

  2. Shimada T. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci. 2001;98(11):6500–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Saito H. Human fibroblast growth factor-23 mutants suppress Na+ -dependent phosphate co-transport activity and 1alpha,25-dihydroxyvitamin D3 production. J Biol Chem. 2002;278(4):2206–11.

    Article  PubMed  Google Scholar 

  4. Itoh N, Ohta H. Pathophysiological roles of FGF signaling in the heart. Front Physiol. 2013;4:247.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Prié D, Forand A, Francoz C, Elie C, Cohen I, Courbebaisse M, Eladari D, Lebrec D, Durand F, Friedlander G. Plasma fibroblast growth factor 23 concentration is increased and predicts mortality in patients on the liver-transplant waiting list. PLoS ONE. 2013;8(6):e66182.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zanchi C, Locatelli M, Benigni A, Corna D, Tomasoni S, Rottoli D, Gaspari F, Remuzzi G, Zoja C. Renal expression of FGF23 in progressive renal disease of diabetes and the effect of ace inhibitor. PLoS ONE. 2013;8(8):e70775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shimada T, Muto T, Urakawa I, Yoneya T, Yamazaki Y, Okawa K, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T. Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology. 2002;143(8):3179–82.

    Article  CAS  PubMed  Google Scholar 

  8. Ichikawa S, Sorenson AH, Austin AM, Mackenzie DS, Fritz TA, Moh A, Hui SL, Econs MJ. Ablation of the Galnt3 gene leads to low-circulating intact fibroblast growth factor 23 (Fgf23) concentrations and hyperphosphatemia despite increased Fgf23 expression. Endocrinology. 2009;150(6):2543–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tagliabracci VS, Engel JL, Wiley SE, Xiao J, Gonzalez DJ, Nidumanda Appaiah H, Koller A, Nizet V, White KE, Dixon JE. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc Natl Acad Sci U S A. 2014;111(15):5520–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Imel EA, Peacock M, Gray AK, Padgett LR, Hui SL, Econs MJ. Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans. J Clin Endocrinol Metab. 2011;96(11):3541–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kurosu H. Regulation of fibroblast growth factor-23 signaling by Klotho. J Biol Chem. 2006;281(10):6120–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444(7120):770–4.

    Article  CAS  PubMed  Google Scholar 

  13. Imura A, Iwano A, Tohyama O, Tsuji Y, Nozaki K, Hashimoto N, Fujimori T, Nabeshima Y-I. Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Lett. 2004;565(1–3):143–7.

    Article  CAS  PubMed  Google Scholar 

  14. Chen CD, Podvin S, Gillespie E, Leeman SE, Abraham CR. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci. 2007;104(50):19796–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shimada T. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Investig. 2004;113(4):561–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yoshida T, Fujimori T, Nabeshima Y. Mediation of unusually high concentrations of 1,25-dihydroxyvitamin D in homozygous klotho mutant mice by increased expression of renal 1alpha-hydroxylase gene. Endocrinology. 2002;143(2):683–9.

    CAS  PubMed  Google Scholar 

  17. Tsujikawa H. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol Endocrinol. 2003;17(12):2393–403.

    Article  CAS  PubMed  Google Scholar 

  18. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2003;19(3):429–35.

    Article  PubMed  Google Scholar 

  19. Bai X. Transgenic mice overexpressing human fibroblast growth factor 23 (R176Q) delineate a putative role for parathyroid hormone in renal phosphate wasting disorders. Endocrinology. 2004;145(11):5269–79.

    Article  CAS  PubMed  Google Scholar 

  20. Araya K, Fukumoto S, Backenroth R, Takeuchi Y, Nakayama K, Ito N, Yoshii N, Yamazaki Y, Yamashita T, Silver J, Igarashi T, Fujita T. A novel mutation in fibroblast growth factor 23 gene as a cause of tumoral calcinosis. J Clin Endocrinol Metab. 2005;90(10):5523–7.

    Article  CAS  PubMed  Google Scholar 

  21. Benet-Pages A, Orlik P, Strom TM, Lorenz-Depiereux B. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet. 2005;14(3):385–90.

    Article  CAS  PubMed  Google Scholar 

  22. Larsson T, Yu X, Davis SI, Draman MS, Mooney SD, Cullen MJ, White KE. A novel recessive mutation in fibroblast growth factor-23 causes familial tumoral calcinosis. J Clin Endocrinol Metab. 2005;90(4):2424–7.

    Article  CAS  PubMed  Google Scholar 

  23. Yamashita T. Fibroblast growth factor (FGF)-23 inhibits renal phosphate reabsorption by activation of the mitogen-activated protein Kinase pathway. J Biol Chem. 2002;277(31):28265–70.

    Article  CAS  PubMed  Google Scholar 

  24. Faul C, Amaral AP, Oskouei B, Hu M-C, Sloan A, Isakova T, Gutiérrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St. John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro-o M, Kusek JW, Keane MG, Wolf M. FGF23 induces left ventricular hypertrophy. J Clin Investig. 2011;121(11):4393–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wöhrle S, Bonny O, Beluch N, Gaulis S, Stamm C, Scheibler M, Müller M, Kinzel B, Thuery A, Brueggen J, Hynes NE, Sellers WR, Hofmann F, Graus-Porta D. FGF receptors control vitamin D and phosphate homeostasis by mediating renal FGF-23 signaling and regulating FGF-23 expression in bone. J Bone Miner Res. 2011;26(10):2486–97.

    Article  PubMed  Google Scholar 

  26. Yanochko GM, Vitsky A, Heyen JR, Hirakawa B, Lam JL, May J, Nichols T, Sace F, Trajkovic D, Blasi E. Pan-FGFR inhibition leads to blockade of FGF23 signaling, soft tissue mineralization, and cardiovascular dysfunction. Toxicol Sci Off J Soc Toxicol. 2013;135(2):451–64.

    Article  CAS  Google Scholar 

  27. Olauson H, Lindberg K, Amin R, Sato T, Jia T, Goetz R, Mohammadi M, Andersson G, Lanske B, Larsson TE. Parathyroid-specific deletion of Klotho Unravels a Novel Calcineurin-Dependent FGF23 signaling pathway that regulates PTH secretion. PLoS Genet. 2013;9(12):e1003975.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Saito H. Circulating FGF-23 is regulated by 1,25-Dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem. 2004;280(4):2543–9.

    Article  PubMed  Google Scholar 

  29. Collins MT, Lindsay JR, Jain A, Kelly MH, Cutler CM, Weinstein LS, Liu J, Fedarko NS, Winer KK. Fibroblast growth factor-23 is regulated by 1alpha,25-dihydroxyvitamin D. J Bone Mineral Res: Off J Am Soc Bone Mineral Res. 2005;20(11):1944–50.

    Article  CAS  Google Scholar 

  30. Yu X, Sabbagh Y, Davis S, Demay M, White K. Genetic dissection of phosphate- and vitamin D-mediated regulation of circulating Fgf23 concentrations. Bone. 2005;36(6):971–7.

    Article  CAS  PubMed  Google Scholar 

  31. Masuyama R, Stockmans I, Torrekens S, Van Looveren R, Maes C, Carmeliet P, Bouillon R, Carmeliet G. Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J Clin Invest. 2006;116(12):3150–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Haussler MR, Whitfield GK, Kaneko I, Forster R, Saini R, Hsieh JC, Haussler CA, Jurutka PW. The role of vitamin D in the FGF23, klotho, and phosphate bone-kidney endocrine axis. Rev Endocr Metab Disord. 2012;13(1):57–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rhee Y, Bivi N, Farrow E, Lezcano V, Plotkin LI, White KE, Bellido T. Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone. 2011;49(4):636–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moe SM, Chertow GM, Parfrey PS, Kubo Y, Block GA, Correa-Rotter R, Drueke TB, Herzog CA, London GM, Mahaffey KW, Wheeler DC, Stolina M, Dehmel B, Goodman WG, Floege J. Evaluation of cinacalcet HTtLCETI. Cinacalcet, fibroblast growth factor-23, and cardiovascular disease in hemodialysis: the evaluation of cinacalcet HCl therapy to lower cardiovascular events (EVOLVE) trial. Circulation. 2015;132(1):27–39.

    Article  CAS  PubMed  Google Scholar 

  35. Sprague SM, Wetmore JB, Gurevich K, Da Roza G, Buerkert J, Reiner M, Goodman W, Cooper K. Effect of cinacalcet and vitamin D analogs on fibroblast growth factor-23 during the treatment of secondary hyperparathyroidism. Clin J Am Soc Nephrol: CJASN. 2015;10(6):1021–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Isakova T, Wahl P, Vargas GS, Gutiérrez OM, Scialla J, Xie H, Appleby D, Nessel L, Bellovich K, Chen J, Hamm L, Gadegbeku C, Horwitz E, Townsend RR, Anderson CAM, Lash JP, Hsu C-y, Leonard MB, Wolf M. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79(12):1370–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Larsson T, Nisbeth U, Ljunggren O, Juppner H, Jonsson KB. Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int. 2003;64(6):2272–9.

    Article  CAS  PubMed  Google Scholar 

  38. Hasegawa H, Nagano N, Urakawa I, Yamazaki Y, Iijima K, Fujita T, Yamashita T, Fukumoto S, Shimada T. Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease. Kidney Int. 2010;78(10):975–80.

    Article  CAS  PubMed  Google Scholar 

  39. Shalhoub V, Shatzen EM, Ward SC, Davis J, Stevens J, Bi V, Renshaw L, Hawkins N, Wang W, Chen C, Tsai M-M, Cattley RC, Wronski TJ, Xia X, Li X, Henley C, Eschenberg M, Richards WG. FGF23 neutralization improves chronic kidney disease–associated hyperparathyroidism yet increases mortality. J Clin Investig. 2012;122(7):2543–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Olauson H, Larsson TE. FGF23 and Klotho in chronic kidney disease. Curr Opin Nephrol Hypertens. 2013;22(4):397–404.

    Article  CAS  PubMed  Google Scholar 

  41. Faul C. Fibroblast growth factor 23 and the heart. Curr Opin Nephrol Hypertens. 2012;21(4):369–75.

    Article  CAS  PubMed  Google Scholar 

  42. Fukumoto S. Anti-fibroblast growth factor 23 antibody therapy. Curr Opin Nephrol Hypertens. 2014;23(4):346–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Prié MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Prié, D. (2016). Vitamin D and FGF23 in Chronic Kidney Disease. In: Ureña Torres, P., Cozzolino, M., Vervloet, M. (eds) Vitamin D in Chronic Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-32507-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32507-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32505-7

  • Online ISBN: 978-3-319-32507-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics