Skip to main content

Acoustic Levitation: A Powerful Tool to Model Spray Processes

  • Chapter
  • First Online:
Process-Spray

Abstract

The acoustic levitation was used as a model system for spray drying processes within DFG Project SPP1423-Process Spray to elucidate the drying behavior of single droplets and the formation of the particle morphology in more detail. The gas flow characteristics inside the levitator were analyzed with computational fluid dynamics simulations. The obtained data were validated with experimental values and showed that the evaporation behavior of levitated droplets can correspond to sprayed droplets. Different reactive and nonreactive substance systems were investigated in single droplet experiments. The influence of process parameters like gas temperature, relative humidity, and droplet size on the drying behavior and particle morphology was elucidated. It was possible to track the conversion of N-Vinyl-2-pyrrolidone in droplet polymerization by using Raman spectroscopy and subsequent principal component analysis. It was found that the first principal component corresponds to the first drying stage and describes the evaporation of water, whereas the second principal component described the polymerization. The crystallinity of the obtained PVP particles increased when temperature and humidity were decreased. The polymerization of partially neutralized acrylic acid revealed the duality of polymerization and crystallization of monomer. Regarding the particle morphology, it was found that a higher amount of sodium acrylate led to a smoother particle surface. One reason for this result is that if sodium acrylate precipitates, it defines predominantly the particle structure. Another reason for this trend in particle morphology is a lower gas pressure within the particle due to a lower polymerization rate, which leads to fewer cracks within the shell. Mannitol served as a nonreactive model system. The drying rate increased with elevated gas temperatures and smaller initial droplet diameters. These experimental results corresponded well with the simulation carried out by Grosshans et al. Additionally, a categorization of morphological properties was introduced. This shows an increasing particle roughness at high temperatures and high initial mass fractions of mannitol. At high relative humidity, metastable, supersaturated mannitol solutions were formed during the drying process.

In summary, this work presents the acoustic levitation as a powerful tool to model spray processes. Thanks to its simple setup and experimental handling, acoustic levitation can give the opportunity to elucidate the processes within single droplets for a wide range of reactive and nonreactive spray systems. It also offers a simple way to check the suitability of systems that have not been considered for spray processes yet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AA:

Acrylic acid

arctanh:

Arcus tangens hyperbolicus

CFD:

Computational fluid dynamics

cos:

Cosinus

DN:

Degree of neutralization

DoE:

Design of experiments

ESA:

European Space Agency

Eq.:

Equation

Fig.:

Figure

NaA:

Sodium acrylate

NASA:

National Aeronautics and Space Administration

NVP:

N-Vinyl-2-pyrrolidone

PC(A):

Principal component (analysis)

PExp:

Particle expansion

PVP:

Polyvinylpyrrolidone

SEM:

Scanning electron microscopy

sin:

Sinus

Tab.:

Table

VA-044:

2,2′-Azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride

A :

Surface [m2]

c :

Concentration [mol L−1]

d :

Droplet diameter [m]

F :

Force [N]

k :

Wave number [m−1]

l :

Distance between transducer and reflector [m]

m :

Mass [kg]

p :

Sound pressure [Pa]

r :

Axis length [m]

r.h.:

Relative humidity [%]

T :

Temperature [°C]

t:

Time [s]

v :

Particle velocity [m s−1]

u :

Gas velocity [m s−1]

V:

Volume [m3]

Y :

Mass fraction [−]

z :

Distance between transducer and pressure node [m]

β :

Evaporation rate [m2 s−1]

λ :

Wave length [m]

ε :

Numerical eccentricity [−]

Φ :

Porosity [−]

ρ :

Density [kg m−3]

0:

At the start of experiment

1:

Main

2:

Side

d:

Droplet

ellipsoid:

Ellipsoidal

end:

At the end of experiment

exp:

Experimental

g:

Glass transition

initiator:

Initiator

m:

Mannitol

max:

Maximal

monomer:

Monomer

lev:

Levitation

shell:

At the time of shell formation

sim:

Simulated

wb:

Wet bulb

References

  1. Masters, K. (1991). Spray drying handbook (5th ed.). New York: Wiley. ISBN 978-0582062665.

    Google Scholar 

  2. Seydel, P., Sengespeick, A., & Blömer, J. (2003). Experiment und mathematische Modellierung zur Feststoffbildung bei der Sprühtrockung. Chemie Ingenieur Technik, 75, 714–719.

    Article  Google Scholar 

  3. Peglow, M., Metzger, T., Lee, G., Schiffter, H., Hampel, R., Heinrich, S., et al. (2008). Modern drying technology (Vol. 2). Weinheim: Wiley-VCH. ISBN 978-3-527-31557-4.

    Google Scholar 

  4. King, L. V. (1934). On the acoustic radiation pressure on spheres. Proceedings of the Royal Society of London. Series A, 147, 212–240.

    Article  Google Scholar 

  5. Lierke, E. G. (1996). Akustische Positionierung—Ein umfassender Überblick über Grundlagen und Anwendungen. Acustica, 82, 220–237.

    Google Scholar 

  6. Yarin, A. L., Pfaffenlehner, M., & Tropea, C. (1998). On the acoustic levitation of droplets. Journal of Fluid Mechanics, 356, 65–91.

    Article  Google Scholar 

  7. Tuckermann, R. (2002). Gas, Aerosole, Tropfen, Partikel in stehenden Ultraschallfeldern: Eine Untersuchung zur Anreicherung schwerer Gase, Verdampfung levitierter Tropfen, Kristall—und Partikelbildung. Ph.D. Thesis, Technical University of Braunschweig.

    Google Scholar 

  8. Trinh, E. H. (1994). Experimental study of streaming in ultrasonic levitators. Physics of Fluids, 6, 3567–3579.

    Article  Google Scholar 

  9. Yan, Z. L., Xie, W. J., & Wei, B. (2011). Vortex flow in acoustically levitated drops. Physics Letters A, 375, 3306–3309.

    Article  Google Scholar 

  10. Welter, E., & Neidhart, B. (1997). Acoustically levitated droplets—A new tool for micro and trace analysis. Fresenius' Journal of Analytical Chemistry, 357, 345–350.

    Article  Google Scholar 

  11. Santesson, S., Andersson, M., Degerman, E., Johansson, T., Nilsson, J., & Nilsson, S. (2000). Airborne cell analysis. Analytical Chemistry, 72, 3412–3418.

    Article  Google Scholar 

  12. Weis, D. D., & Nardozzi, J. D. (2005). Enzyme kinetics in acoustically levitated droplets of supercooled water: A novel approach to cryoenzymology. Analytical Chemistry, 77, 2558–2563.

    Article  Google Scholar 

  13. Trinh, E. H. (1985). Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity. Review of Scientific Instruments, 56, 2059–2065.

    Article  Google Scholar 

  14. Trinh, E. H., & Hsu, C.-J. (1979). Equilibrium shapes of acoustically levitated liquid drops. Journal of the Acoustical Society of America, 79, 1335–1338.

    Article  Google Scholar 

  15. Santesson, S., Johansson, J., Taylor, L. S., Levander, L., Fox, S., Sepaniak, M., et al. (2003). Airborne chemistry coupled to Raman spectroscopy. Analytical Chemistry, 75, 2177–2180.

    Article  Google Scholar 

  16. Rehder, S., Wu, J. X., Laackmann, J., Moritz, H.-U., Rantanen, J., Rades, T., et al. (2013). A case study of real-time monitoring of solid-state phase transformations in acoustically levitated particles using near infrared and Raman spectroscopy. European Journal of Pharmaceutical Sciences, 48, 97–103.

    Article  Google Scholar 

  17. Priego-Capote, F., & de Castro, L. (2006). Ultrasound-assisted levitation: Lab-on-a-drop. TrAC, Trends in Analytical Chemistry, 25, 856–867.

    Article  Google Scholar 

  18. DFG-Schwerpunktprogramm 1423: [online]. [cit. 2015-08-20] http://www.spp-prozess-spray.uni-bremen.de

  19. Karaputadze, T. M., Kurilova, A. I., Topchiev, D. A., & Kabanov, V. A. (1972). Mechanism of the effect of pH and ionic strength on the chain propagation rate constant during radical polymerization of methacrylic and acrylic acids in aqueous solutions. Vysokomolekulyarnye Soedineniya, Seriya B: Kratkie Soobshcheniya, 14, 323–325.

    Google Scholar 

  20. Lierke, E. G. (2002). Deformation and displacement of liquid drops in an optimized acoustic standing wave levitator. Acta Acustica United with Acustica, 88, 206–217.

    Google Scholar 

  21. Laackmann, J. (2014). Aufbau und Automatisierung einer Versuchsapparatur zur Untersuchung der radikalischen Polymerisation in akustisch levitierten Einzeltropfen am Beispiel von N-Vinyl-2-pyrrolidon. Ph.D. Thesis, University of Hamburg.

    Google Scholar 

  22. Otto, B. (2011). Akustische Levitation als Methode für die Analyse von Polymerpartikeln—Konzeption einer Probennahmevorrichtung. Unpublished Diploma Thesis, University of Hamburg.

    Google Scholar 

  23. Sedelmayer, R. (2010). Experimentelle Untersuchungen zur Anströmung levitierter Einzeltropfen. Unpublished Diploma Thesis, University of Hamburg.

    Google Scholar 

  24. Laackmann, J. (2010). Morphologiebildung akustisch levitierter Partikel. Unpublished Diploma Thesis, University of Hamburg.

    Google Scholar 

  25. Walag, K. (2011). Sprühpolymerisation: Modellierung der Mikropolymerisation im Turmreaktor. Ph.D. Thesis, University of Hamburg.

    Google Scholar 

  26. Biedasek, S. (2008). Aufbau eines akustischen Levitators zur Durchführung und Online-Verfolgung von Polymerisationen in Einzeltropfen als Modellexperiment für die Sprühpolymerisation. Ph.D. Thesis, University of Hamburg.

    Google Scholar 

  27. Griesing, M. (2011). Akustische Levitation und Analytik von Natriumacrylatpolymerisationen im Einzeltropfen. Unpublished Diploma Thesis, University of Hamburg.

    Google Scholar 

  28. Quiño, J., Hellwig, T., Griesing, M., Pauer, W., Moritz, H.-U., Will, S., et al. (2015). One-dimensional Raman spectroscopy and shadowgraphy for the analysis of the evaporation behavior of acetone/water drops. International Journal of Heat and Mass Transfer, 89, 406–413.

    Article  Google Scholar 

  29. Sedelmayer, R., Griesing, M., Halfar, A. H., Pauer, W., & Moritz, H. U. (2013). Experimental investigation of the morphology formation of polymer particles in an acoustic levitator. Macromolecular Symposium, 333, 142–150.

    Article  Google Scholar 

  30. Laackmann, J., Säckel, W., Cepelyte, L., Walag, K., Sedelmayer, R., Keller, F., et al. (2011). Experimental investigation and numerical simulation of spray processes. Macromolecular Symposium, 302, 235–244.

    Article  Google Scholar 

  31. Charlesworth, D. H., & Marshall, W. R. (1960). Evaporation from drops containing dissolved solids. AIChE Journal, 6, 9–23.

    Article  Google Scholar 

  32. Gefahrstoffinformationssystem (GESTIS) der Deutschen Gesetzlichen Unfallversicherung [online]. [cit. 2015-08-18].

    Google Scholar 

  33. http://www.dguv.de/ifa/GESTIS/GESTIS-Stoffdatenbank/index.jsp

  34. JØrgesen, K. (2005). Drying rate and morphology of slurry droplets. Ph.D. Thesis, Technical University of Denmark.

    Google Scholar 

  35. Halfar, A. H., Pauer, W., & Moritz, H.-U. (2014). Polymerization of partially neutralized acrylic acid in acoustically levitated droplets. In 26th Annual Conference on Liquid Atomization and Spray Systems ILASS, Bremen, Germany, 8–10 September 2014.

    Google Scholar 

  36. Säckel, W., & Nieken, U. (2014). Modellierung reaktiver Sprühtrocknungsprozesse am Beispiel der Sprühpolymerisation. Chemie-Ingenieur-Technik, 86, 438–448.

    Article  Google Scholar 

  37. Halfar, A. H., Säckel, W., Rüsch, S., Pauer, W., Moritz, H.-U. (2015). Kinetische Untersuchungen in Einzeltropfen zur Prozessintensivierung der Sprühpolymerisation. ProcessNet Jahrestreffen der Fachgruppen Trocknungstechnik und Wärme- und Stoffübergang, Leipzig, Germany, March 2015.

    Google Scholar 

  38. Lacik, I., Beuermann, S., & Buback, M. (2004). PLP-SEC study into the free-radical propagation rate coefficients of partially and fully ionized acrylic acid in aqueous solution. Macromolecular Chemistry and Physics, 205, 1080–1087.

    Article  Google Scholar 

  39. Littringer, E. M., Mescher, A., Eckhard, S., Schröttner, H., Langes, C., Fries, M., et al. (2012). Spray drying of mannitol as a drug carrier—The impact of process parameters on product properties. Drying Technology, 30, 114–124.

    Article  Google Scholar 

  40. Grosshans, H., Griesing, M., Mönckedieck, M., Walther, B., Gopireddy, S. R., Sedelmayer, R., et al. (2016). Numerical and experimental study of the drying of bi-component droplets under various drying conditions. International Journal of Heat and Mass Transfer, 96, 97–109.

    Google Scholar 

  41. Griesing, M., Grosshans, H., Hellwig, T., Sedelmayer, R., Gopireddy, S.R., Pauer, W., et al. (2015). Influence of the drying air humidity on the particle formation of single mannitol-water droplet, 7. Symposium Produktgestaltung in der Partikeltechnologie, Berlin, Germany, 23–24 April 2015.

    Google Scholar 

  42. Maas, S. G., Schaldach, G., Littringer, E. M., Mescher, A., Griesser, U. J., Braun, D. E., et al. (2011). The impact of spray drying outlet temperature on the particle morphology of mannitol. Powder Technology, 213, 27–35.

    Article  Google Scholar 

  43. Burger, A., Hetz, S., & Weissnicht, A. (1994). On the polymorphism of mannitol. European Journal of Pharmaceutics and Biopharmaceutics, 40, 21.

    Google Scholar 

  44. Pitkänen, I., Perkkalainen, P., & Rautiainen, H. (1993). Thermoanalytical studies on phases of D-mannitol. Thermochimica Acta, 214, 157–162.

    Article  Google Scholar 

  45. Bensouissi, A., Roge, B., & Mathlouthi, M. (2010). Effect of conformation and water interactions of sucrose, maltitol, mannitol and xylitol on their metastable zone width and ease of nucleation. Food Chemistry, 122, 443–446.

    Article  Google Scholar 

  46. Kim, A. I., Akers, M. J., & Nail, S. L. (1998). The physical state of mannitol after freeze-drying: Effects of mannitol concentration, freezing rate, and a noncrystallizing cosolute. Journal of Pharmaceutical Sciences, 87, 931–935.

    Article  Google Scholar 

  47. Griesing, M., Sedelmayer, R., Pauer, W., & Moritz, H.-U. (2012). Acoustic levitation of dispersions: Experimental setup and application. In First Working Party on Polymer Reaction Engineering, 12 October 2012. DOUA Campus University of Lyon, France.

    Google Scholar 

  48. Serfert, Y., Schröder, J., Mescher, A., Laackmann, J., Shaikh, M. Q., Rätzke, K., et al. (2012). Characterization of the spray drying behavior of emulsions containing oil droplets with a structured interface. Journal of Microencapsulation, 30, 325–334.

    Article  Google Scholar 

  49. Laackmann, L., Ahmed, S., Sedelmayer, R., Klaiber, M., Pauer, W., Simon, S., et al. (2012). Investigation of polymerization of NVP and drying of PVP in an acoustic levitator using a smart camera for online process measurement. In Proceedings ICLASS.

    Google Scholar 

  50. Laackmann, J., Sedelmayer, R., Pauer, W., & Moritz, H.-U. (2012). Schwebende Einzeltropfen als Modellsystem für die Sprühpolymerisation am Beispiel von N-Vinyl-2-pyrrolidon. In Proceedings SPRAY.

    Google Scholar 

  51. Halfar, A. H., Rüsch, S., Pauer, W., & Moritz, H.-U. (2014). Acoustically levitated droplets as a model system for evaporation and polymerization in spraying processes. In International Thermal Spray Conference & Exposition, Barcelona, Spain.

    Google Scholar 

  52. Griesing, M., Grosshans, H., Hellwig, T., Sedelmayer, R., Gopireddy, S. R., Pauer, W., et al. (2015). Influence of the drying air humidity on the particle formation of single mannitol-water droplets. Chemie-Ingenieur-Technik submitted.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support for this work within the DFG Project SPP 1423-Process Spray “Experimentelle Untersuchungen an schwebenden Einzeltropfen als Modellsystem für das bessere Verständnis versprühter Tropfen und der Strukturausbildung bei der Herstellung von pulverförmigen Feststoffen”.

We wish to thank all our cooperation partners for the lively exchange and their scientific expertise in many discussions.

Prof. Drusch, Prof. Schwarz, CAU Kiel, TU Berlin.

Prof. Nieken, University of Stuttgart.

Prof. Simon, University of Stuttgart.

Prof. Gutheil, University of Heidelberg.

Dr. Fries, Fraunhofer IKTS Dresden.

Prof. Steckel, CAU Kiel.

Prof. Schuchmann, Dr. Gaukel, KIT.

Prof. Walzel, TU Dortmund.

Dr. Bräuer, Prof. Schlücker, University of Erlangen.

A special thank goes to Prof. Dr. U. Fritsching and Dr. B. Giernoth for the coordination of this program.

Furthermore, we would like to thank R. Walter from the Biozentrum Grindel und Zoologisches Museum, University of Hamburg for the SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-U. Moritz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Junk, M. et al. (2016). Acoustic Levitation: A Powerful Tool to Model Spray Processes. In: Fritsching, U. (eds) Process-Spray. Springer, Cham. https://doi.org/10.1007/978-3-319-32370-1_4

Download citation

Publish with us

Policies and ethics