Skip to main content

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

  • 851 Accesses

Abstract

Both clinical and experimental data indicate that the pathophysiology of perinatal brain damage is multifactorial and is in many ways distinct from that of adult stroke. Development of the blood–brain barrier (BBB) begins mid-gestation in rodents and continues during the postnatal period. Therefore, the stage of maturation of individual components of the BBB and other brain barriers may play a central role in age-specific responses of an immature brain to cerebral ischemia and hypoxia, affecting injury subtypes, severity, and evolution. We discuss some of the most recent findings regarding the neurovascular responses of the immature brain to focal arterial stroke and modulation of these processes by inflammatory signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Engelhardt B, Sorokin L. The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol. 2009;31(4):497–511.

    Article  PubMed  Google Scholar 

  2. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013;19(12):1584–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Engelhardt B, Liebner S. Novel insights into the development and maintenance of the blood-brain barrier. Cell Tissue Res. 2014;355(3):687–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Armulik A, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468(7323):557–61.

    Article  CAS  PubMed  Google Scholar 

  5. Daneman R, et al. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature. 2010;468(7323):562–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cahoy JD, et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci. 2008;28(1):264–78.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Barres BA. Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol. 2010;20(5):588–94.

    Article  CAS  PubMed  Google Scholar 

  8. Fantin A, et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood. 2010;116(5):829–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shalaby F, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 1995;376(6535):62–6.

    Article  CAS  PubMed  Google Scholar 

  10. Carmeliet P, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 1996;380(6573):435–9.

    Article  CAS  PubMed  Google Scholar 

  11. Arnold TD, et al. Excessive vascular sprouting underlies cerebral hemorrhage in mice lacking alphaVbeta8-TGFbeta signaling in the brain. Development. 2014;141(23):4489–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Daneman R, et al. Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci U S A. 2009;106(2):641–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stenman JM, et al. Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science. 2008;322(5905):1247–50.

    Article  CAS  PubMed  Google Scholar 

  14. Liebner S, et al. Wnt/beta-catenin signaling controls development of the blood-brain barrier. J Cell Biol. 2008;183(3):409–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57(2):178–201.

    Article  CAS  PubMed  Google Scholar 

  16. Gould DB, et al. Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science. 2005;308(5725):1167–71.

    Article  CAS  PubMed  Google Scholar 

  17. Nguyen HL, et al. TGF-beta signaling in endothelial cells, but not neuroepithelial cells, is essential for cerebral vascular development. Lab Invest. 2011;91(11):1554–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sridurongrit S, et al. Signaling via the Tgf-beta type I receptor Alk5 in heart development. Dev Biol. 2008;322(1):208–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Park SO, et al. Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J Clin Invest. 2009;119(11):3487–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ek CJ, et al. Efflux mechanisms at the developing brain barriers: ABC-transporters in the fetal and postnatal rat. Toxicol Lett. 2010;197(1):51–9.

    Article  CAS  PubMed  Google Scholar 

  21. Urayama A, et al. Mannose 6-phosphate receptor-mediated transport of sulfamidase across the blood-brain barrier in the newborn mouse. Mol Ther. 2008;16(7):1261–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dziegielewska KM, et al. Fetuin in the developing neocortex of the rat: distribution and origin. J Comp Neurol. 2000;423(3):373–88.

    Article  CAS  PubMed  Google Scholar 

  23. Vates GE, et al. Pericyte constriction after stroke: the jury is still out. Nat Med. 2010;16(9):959; author reply 960.

    Article  CAS  PubMed  Google Scholar 

  24. Denes A, et al. Inflammation and brain injury: acute cerebral ischaemia, peripheral and central inflammation. Brain Behav Immun. 2010;24(5):708–23.

    Article  CAS  PubMed  Google Scholar 

  25. Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17(7):796–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Knowland D, et al. Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron. 2014;82(3):603–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Enzmann G, et al. The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury. Acta Neuropathol. 2013;125(3):395–412.

    Article  PubMed  Google Scholar 

  28. Osborn L, et al. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell. 1989;59(6):1203–11.

    Article  CAS  PubMed  Google Scholar 

  29. Stanimirovic DB, et al. Increase in surface expression of ICAM-1, VCAM-1 and E-selectin in human cerebromicrovascular endothelial cells subjected to ischemia-like insults. Acta Neurochir Suppl. 1997;70:12–6.

    CAS  PubMed  Google Scholar 

  30. Anthony DC, et al. Age-related effects of interleukin-1 beta on polymorphonuclear neutrophil-dependent increases in blood-brain barrier permeability in rats. Brain. 1997;120(Pt 3):435–44.

    Article  PubMed  Google Scholar 

  31. Stolp HB, et al. Long-term changes in blood-brain barrier permeability and white matter following prolonged systemic inflammation in early development in the rat. Eur J Neurosci. 2005;22(11):2805–16.

    Article  CAS  PubMed  Google Scholar 

  32. Renolleau S, et al. A model of transient unilateral focal ischemia with reperfusion in the P7 neonatal rat: morphological changes indicative of apoptosis. Stroke. 1998;29(7):1454–60; discussion 1461.

    Article  CAS  PubMed  Google Scholar 

  33. Derugin N, Ferriero DM, Vexler ZS. Neonatal reversible focal cerebral ischemia: a new model. Neurosci Res. 1998;32(4):349–53.

    Article  CAS  PubMed  Google Scholar 

  34. Mu D, et al. Regulation of hypoxia-inducible factor 1alpha and induction of vascular endothelial growth factor in a rat neonatal stroke model. Neurobiol Dis. 2003;14(3):524–34.

    Article  CAS  PubMed  Google Scholar 

  35. Woo MS, et al. Genetic deletion of CD36 enhances injury after acute neonatal stroke. Ann Neurol. 2012;72:961–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Derugin N, et al. Evolution of brain injury after transient middle cerebral artery occlusion in neonatal rat. Stroke. 2000;31:1752–61.

    Article  CAS  PubMed  Google Scholar 

  37. Rice 3rd JE, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol. 1981;9(2):131–41.

    Article  PubMed  Google Scholar 

  38. Sheldon RA, et al. Manipulation of antioxidant pathways in neonatal murine brain. Pediatr Res. 2004;56(4):656–62.

    Article  CAS  PubMed  Google Scholar 

  39. Northington FJ, Chavez-Valdez R, Martin LJ. Neuronal cell death in neonatal hypoxia-ischemia. Ann Neurol. 2011;69(5):743–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van Velthoven CT, et al. Stem cells for neonatal stroke- the future is here. Front Cell Neurosci. 2014;8:207.

    PubMed  PubMed Central  Google Scholar 

  41. Fernandez-Lopez D, et al. Mechanisms of perinatal arterial ischemic stroke. J Cereb Blood Flow Metab. 2014;34(6):921–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mallard C, Vexler ZS. Modeling ischemia in the immature brain: how translational are animal models? Stroke. 2015;46(10):3006–11.

    Article  PubMed  Google Scholar 

  43. Hagberg H, et al. The role of inflammation in perinatal brain injury. Nat Rev Neurol. 2015;11(4):192–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fernandez-Lopez D, et al. Blood-brain barrier permeability is increased after acute adult stroke but not neonatal stroke in the rat. J Neurosci. 2012;32(28):9588–600.

    Article  CAS  PubMed  Google Scholar 

  45. Ek CJ, et al. Brain barrier properties and cerebral blood flow in neonatal mice exposed to cerebral hypoxia-ischemia. J Cereb Blood Flow Metab. 2015;35(5):818–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shimotake J, et al. Vascular endothelial growth factor receptor-2 inhibition promotes cell death and limits endothelial cell proliferation in a neonatal rodent model of stroke. Stroke. 2010;41(2):343–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dzietko M, et al. VEGF treatment in a rodent model of neonatal stroke. In: PAS meeting. Boston; 2012.

    Google Scholar 

  48. Dzietko M, et al. Delayed VEGF treatment enhances angiogenesis and recovery after neonatal focal rodent stroke. Transl Stroke Res. 2013;4(2):189–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kniesel U, Risau W, Wolburg H. Development of blood-brain barrier tight junctions in the rat cortex. Brain Res Dev Brain Res. 1996;96(1–2):229–40.

    Article  CAS  PubMed  Google Scholar 

  50. Engelhardt B. Development of the blood-brain barrier. Cell Tissue Res. 2003;314(1):119–29.

    Article  CAS  PubMed  Google Scholar 

  51. Benjelloun N, et al. Inflammatory responses in the cerebral cortex after ischemia in the P7 neonatal Rat. Stroke. 1999;30(9):1916–23; discussion 1923–4.

    Article  CAS  PubMed  Google Scholar 

  52. Wang R, et al. Albumin reduces blood-brain barrier permeability but does not alter infarct size in a rat model of neonatal stroke. Pediatr Res. 2007;62(3):261–6.

    Article  CAS  PubMed  Google Scholar 

  53. Dzietko M, et al. MRI as a translational tool for the study of neonatal stroke. J Child Neurol. 2011;26(9):1145–53.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Goetz JG, et al. Concerted regulation of focal adhesion dynamics by galectin-3 and tyrosine-phosphorylated caveolin-1. J Cell Biol. 2008;180(6):1261–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fukuda S, et al. Focal cerebral ischemia induces active proteases that degrade microvascular matrix. Stroke. 2004;35(4):998–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Doverhag C, et al. Galectin-3 contributes to neonatal hypoxic-ischemic brain injury. Neurobiol Dis. 2010;38(1):36–46.

    Article  CAS  PubMed  Google Scholar 

  57. Lalancette-Hebert M, et al. Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury. J Neurosci. 2012;32(30):10383–95.

    Article  CAS  PubMed  Google Scholar 

  58. Zador Z, et al. Role of aquaporin-4 in cerebral edema and stroke. Handb Exp Pharmacol. 2009;190:159–70.

    Article  CAS  PubMed  Google Scholar 

  59. Papadopoulos MC, et al. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 2004;18(11):1291–3.

    CAS  PubMed  Google Scholar 

  60. Hudome S, et al. The role of neutrophils in the production of hypoxic-ischemic brain injury in the neonatal rat. Pediatr Res. 1997;41(5):607–16.

    Article  CAS  PubMed  Google Scholar 

  61. Bona E, et al. Chemokine and inflammatory cell response to hypoxia-ischemia in immature rats. Pediatr Res. 1999;45(4 Pt 1):500–9.

    Article  CAS  PubMed  Google Scholar 

  62. Yamasaki Y, et al. New therapeutic possibility of blocking cytokine-induced neutrophil chemoattractant on transient ischemic brain damage in rats. Brain Res. 1997;759(1):103–11.

    Article  CAS  PubMed  Google Scholar 

  63. Denker S, et al. Macrophages are comprised of resident brain microglia not infiltrating peripheral monocytes acutely after neonatal stroke. J Neurochem. 2007;100(4):893–904.

    Article  CAS  PubMed  Google Scholar 

  64. Gliem M, et al. Macrophages prevent hemorrhagic infarct transformation in murine stroke models. Ann Neurol. 2012;71(6):743–52.

    Article  CAS  PubMed  Google Scholar 

  65. Chu HX, et al. Immune cell infiltration in malignant middle cerebral artery infarction: comparison with transient cerebral ischemia. J Cereb Blood Flow Metab. 2014;34(3):450–9.

    Article  CAS  PubMed  Google Scholar 

  66. Catania A, Lipton JM. Peptide modulation of fever and inflammation within the brain. Ann N Y Acad Sci. 1998;856:62–8.

    Article  CAS  PubMed  Google Scholar 

  67. Ogunshola OO, et al. Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Brain Res Dev Brain Res. 2000;119(1):139–53.

    Article  CAS  PubMed  Google Scholar 

  68. Iwai M, et al. Erythropoietin promotes neuronal replacement through revascularization and neurogenesis after neonatal hypoxia/ischemia in rats. Stroke. 2007;38(10):2795–803.

    Article  CAS  PubMed  Google Scholar 

  69. Fernandez-Lopez D, et al. Acute and chronic vascular responses to experimental focal arterial stroke in the neonate rat. Transl Stroke Res. 2013;4(2):179–88.

    Article  CAS  PubMed  Google Scholar 

  70. Beck H, Plate KH. Angiogenesis after cerebral ischemia. Acta Neuropathol. 2009;117(5):481–96.

    Article  PubMed  Google Scholar 

  71. Hayashi T, et al. Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J Cereb Blood Flow Metab. 2003;23(2):166–80.

    Article  CAS  PubMed  Google Scholar 

  72. Marti HJ, et al. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol. 2000;156(3):965–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ohab JJ, et al. A neurovascular niche for neurogenesis after stroke. J Neurosci. 2006;26(50):13007–16.

    Article  CAS  PubMed  Google Scholar 

  74. Ghabriel MN, et al. Immunological targeting of the endothelial barrier antigen (EBA) in vivo leads to opening of the blood-brain barrier. Brain Res. 2000;878(1–2):127–35.

    Article  CAS  PubMed  Google Scholar 

  75. Lu H, et al. Temporary disruption of the rat blood-brain barrier with a monoclonal antibody: a novel method for dynamic manganese-enhanced MRI. Neuroimage. 2010;50(1):7–14.

    Article  PubMed  Google Scholar 

  76. Saubamea B, et al. Heterogeneity in the rat brain vasculature revealed by quantitative confocal analysis of endothelial barrier antigen and P-glycoprotein expression. J Cereb Blood Flow Metab. 2012;32(1):81–92.

    Article  CAS  PubMed  Google Scholar 

  77. Rosenstein JM, et al. Immunocytochemical expression of the endothelial barrier antigen (EBA) during brain angiogenesis. Brain Res Dev Brain Res. 1992;66(1):47–54.

    Article  CAS  PubMed  Google Scholar 

  78. Sternberger NH, Sternberger LA. Blood-brain barrier protein recognized by monoclonal antibody. Proc Natl Acad Sci U S A. 1987;84(22):8169–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Sources of Funding

NINDS_NS80015, NINDS_NS44025, NINDS_NS76726, The Leducq Foundation DSRR_P34404.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zinaida S. Vexler Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vexler, Z.S. (2016). Barrier Mechanisms in Neonatal Stroke. In: Chen, J., Zhang, J., Hu, X. (eds) Non-Neuronal Mechanisms of Brain Damage and Repair After Stroke. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-32337-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32337-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32335-0

  • Online ISBN: 978-3-319-32337-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics