Skip to main content

Genetics of Pigment Biosynthesis and Degradation

  • Chapter
  • First Online:
The Kiwifruit Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Within the genus Actinidia, there is large variability in fruit skin and flesh colour. The most familiar kiwifruit, A. chinensis var. deliciosa ‘Hayward’, has flesh of bright emerald green. Although many species have live, coloured fruit skins, most commercial cultivars have a dead, brown fruit skin. Hidden underneath the skin is a diversity and range of flesh colours which are characteristic of the species or specific genotypes. From a commercial point of view, flesh colour has become a particularly important feature which distinguishes the fruit and new cultivars in the market. In today’s market, there is a large number of cultivars with a range of flesh colours grouped into three main categories: green, yellow and red. The red-fleshed cultivars are a recent addition and have generated great interest throughout the industry worldwide. It is also the distinctive feature of the genotype used to build the reference genome for A. chinensis var. chinensis (Huang et al., 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharoni A, De Vos CHR, Wein M, Sun Z-K, Greco R, Kroon A et al (2001) The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J 28(3):319–332. doi:10.1046/j.1365-313X.2001.01154.x

    Article  CAS  PubMed  Google Scholar 

  • Albert NW, Davies KM, Lewis DH, Zhang H-B, Montefiori M, Brendolise C et al (2014) A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell 26(3):962–980. doi:10.1105/tpc.113.122069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ampomah-Dwamena C, McGhie T, Wibisono R, Montefiori M, Hellens RP, Allan AC (2009) The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit. J Exp Bot 60(13):3765–3779. doi:10.1093/jxb/erp218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ampomah-Dwamena C, Driedonks N, Lewis D, Shumskaya M, Chen X-Y, Wurtzel E et al (2015) The phytoene synthase gene family of apple (Malus x domestica) and its role in controlling fruit carotenoid content. BMC Plant Biol 15:185. doi:10.1186/s12870-015-0573-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Antognozzi E, Battistelli A, Famiani F, Moscatello S, Stanica F, Tombesi A (1996) Influence of CPPU on carbohydrate accumulation and metabolism in fruits of Actinidia deliciosa (A. Chev.). Sci Hort 65(1):37–47. doi:10.1016/0304-4238(95)00852-7

    Google Scholar 

  • Armstead I, Donnison I, Aubry S, Harper J, Hörtensteiner S, James C et al (2007) Cross-species identification of Mendel’sIlocus. Science 315(5808):73. doi:10.1126/science.1132912

    Article  CAS  PubMed  Google Scholar 

  • Barry CS (2009) The stay-green revolution: Recent progress in deciphering the mechanisms of chlorophyll degradation in higher plants. Plant Sci 176(3):325–333

    Article  CAS  Google Scholar 

  • Brandi F, Bar E, Mourgues F, Horváth G, Turcsi E, Giuliano G, Liverani A et al (2011) Study of ‘Redhaven’ peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biol 11:24. doi:10.1186/1471-2229-11-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavallini E, Matus JT, Finezzo L, Zenoni S, Loyola R, Guzzo F et al (2015) The phenylpropanoid pathway is controlled at different branches by a set of R2R3-MYB C2 repressors in grapevine. Plant Physiol 167(4):1448–1470. doi:10.1104/pp.114.256172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazzonelli CI (2011) Carotenoids in nature: insights from plants and beyond. Funct Plant Biol 38(11):833–847. doi:10.1071/FP11192

    Article  CAS  Google Scholar 

  • Cheng CH, Seal AG, Murphy SJ, Lowe RG (2007) Red-fleshed kiwifruit (Actinidia chinensis) breeding in New Zealand. Acta Hort 753:139–146

    Article  CAS  Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Bioch 72:1–20. doi:10.1016/j.plaphy.2013.05.009

    Article  CAS  Google Scholar 

  • Comeskey DJ, Montefiori M, Edwards PJB, McGhie TK (2009) Isolation and structural identification of the anthocyanin components of red kiwifruit. J Agric Food Chem 57(5):2035–2039. doi:10.1021/jf803287d

    Article  CAS  PubMed  Google Scholar 

  • Davies KM, Espley RV (2013) Opportunities and challenges for metabolic engineering of secondary metabolite pathways for improved human health characters in fruit and vegetable crops. NZ J Crop Hort Sci 41(3):154–177. doi:10.1080/01140671.2013.793730

    Article  CAS  Google Scholar 

  • Davies KM, Albert NW, Schwinn KE (2012) From landing lights to mimicry: the molecular regulation of flower colouration and mechanisms for pigmentation patterning. Funct Plant Biol 39(8):619–638. doi:10.1071/FP12195

    Article  CAS  Google Scholar 

  • Devitt LC, Fanning K, Dietzgen RG, Holton TA (2010) Isolation and functional characterization of a lycopene β-cyclase gene that controls fruit colour of papaya (Carica papaya L.). J Exp Bot 61(1):33–39. doi:10.1093/jxb/erp284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edelenbos M, Christensen LP, Grevsen K (2001) HPLC determination of chlorophyll and carotenoid pigments in processed green pea cultivars (Pisum sativum L.). J AgricFood Chem 49:4768–4774

    Article  CAS  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49(3):414–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esteban R, Moran JF, Becerril JM, Garcia-Plazaola JI (2015) Versatility of carotenoids: an integrated view on diversity, evolution, functional roles and environmental interactions. Environ Exp Bot 119:63–75. doi:10.1016/j.envexpbot.2015.04.009

    Article  CAS  Google Scholar 

  • Falchi R, Vendramin E, Zanon L, Scalabrin S, Cipriani G, Verde I et al (2013) Three distinct mutational mechanisms acting on a single gene underpin the origin of yellow flesh in peach. Plant J 76(2):175–187. doi:10.1111/tpj.12283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66(1):94–116. doi:10.1111/j.1365-313X.2010.04459.x

    Article  CAS  PubMed  Google Scholar 

  • Fraser LG, Tsang GK, McNeilage MA, Datson PM, Beatson RA (2006) Fruit colour and allele expression in novel kiwifruit. Abstracts poster POS-THU-038: In: Proceedings of Australian social biochemical molecular biology, ComBio2006, vol 38. Brisbane, 24–28 Sept 2006

    Google Scholar 

  • Fraser LG, Seal AG, Montefiori M, McGhie TK, Tsang GK, Datson PM et al (2013) An R2R3 MYB transcription factor determines red petal colour in an Actinidia (kiwifruit) hybrid population. BMC Genomics 14. doi:10.1186/1471-2164-14-28

    Google Scholar 

  • Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62(8):2465–2483. doi:10.1093/jxb/erq442

    Article  CAS  PubMed  Google Scholar 

  • Hörtensteiner S (2006) Chlorophyll degradation during senescence. Ann Rev Plant Biol 57:55–77

    Article  Google Scholar 

  • Hörtensteiner S (2013) Update on the biochemistry of chlorophyll breakdown. Plant Mol Biol 82(6):505–517. doi:10.1007/s11103-012-9940-z

    Article  PubMed  Google Scholar 

  • Huang S-X, Ding J, Deng D-J, Tang W, Sun H-H, Liu D-Y et al (2013) Draft genome of the kiwifruit Actinidia chinensis. Nat Commun 4:2640. doi:10.1038/ncomms3640

    PubMed  PubMed Central  Google Scholar 

  • Iwahori S, Tominaga S, Yamasaki T (1988) Stimulation of fruit growth of kiwifruit, Actinidia chinensis Planch., by N-(2-chloro-4-pyridyl)-N′-phenylurea, a diphenylurea-derivative cytokinin. Sci Hort 35(1–2):109–115. doi:10.1016/0304-4238(88)90042-8

    Google Scholar 

  • Jaeger SR, Harker FR (2005) Consumer evaluation of novel kiwifruit: willingness-to-pay. J Sci Food Agric 85(15):2519–2526. doi:10.1002/jsf.2330

    Article  CAS  Google Scholar 

  • Jing G-X, Li T-T, Qu H-X, Yun Z, Jia Y-X, Zheng X-L et al (2015) Carotenoids and volatile profiles of yellow- and red-fleshed papaya fruit in relation to the expression of carotenoid cleavage dioxygenase genes. Postharvest Biol Technol 109:114–119

    Google Scholar 

  • Johnson ET, Ryu S, Yi H, Shin B, Cheong H, Choi G (2001) Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase. Plant J 25(3):325–333

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304(5673):982

    Article  PubMed  Google Scholar 

  • Lado J, Cronje P, Alquézar B, Page A, Manzi M, Gómez-Cadenas et al (2015) Fruit shading enhances peel color, carotenes accumulation and chromoplast differentiation in red grapefruit. Physiol Plant 154(4):469–484. doi:10.1111/ppl.12332

    Google Scholar 

  • Lewis DH, Burge GK, Schmierer DM, Jameson PE (1996) Cytokinins and fruit development in the kiwifruit (Actinidia deliciosa). I. Changes during fruit development. Physiol Plant 98(1):179–186

    Article  CAS  Google Scholar 

  • Li L, Yuan H (2013) Chromoplast biogenesis and carotenoid accumulation. Arch Biochem Biophys 539(2):102–109. doi:10.1016/j.abb.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  • Li W-B, Liu Y-F, Zeng S-H, Xiao G, Wang G, Wang Y et al (2015) Gene expression profiling of development and anthocyanin accumulation in kiwifruit (Actinidia chinensis) based on transcriptome sequencing. PLoS ONE 10(8):e0136439. doi:10.1371/journal.pone.0136439

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin-Wang K, Micheletti D, Palmer J, Volz R, Lozano L, Espley R et al (2011) High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant Cell Environ 34(7):1176–1190. doi:10.1111/j.1365-3040.2011.02316.x

    Article  PubMed  Google Scholar 

  • Liu L-H, Shao Z-Y, Zhang M, Wang Q-M (2015) Regulation of carotenoid metabolism in tomato. Mol Plant 8:28–39

    Article  CAS  PubMed  Google Scholar 

  • Ma N-N, Feng H-L, Meng X, Li D, Yang D-Y, Wu C-G et al (2014) Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening. BMC Plant Biol 14:351. doi:10.1186/s12870-014-0351-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Man Y-P, Wang Y-C, Li Z-Z, Jiang Z-W, Yang H-L, Gong J-J et al (2015) High-temperature inhibition of biosynthesis and transportation of anthocyanins results in the poor red coloration in red-fleshed Actinidia chinensis. Physiol Plant 153(4):565–583. doi:10.1111/ppl.12263

    Article  CAS  PubMed  Google Scholar 

  • McGhie TK (2013) Secondary metabolite components of kiwifruit. Ad Food Nutr Res 68:101–124. doi:10.1016/b978-0-12-394294-4.00006-7

    Article  Google Scholar 

  • McGhie TK, Ainge GD (2002) Color in fruit of the genus Actinidia: carotenoid and chlorophyll compositions. J Agric Food Chem 50(1):117–121

    Article  CAS  PubMed  Google Scholar 

  • Miller PE, Snyder DC (2012) Phytochemicals and cancer risk: a review of the epidemiological evidence. Nutr Clin Pract 27(5):599–612. doi:10.1177/0884533612456043

    Article  PubMed  Google Scholar 

  • Montefiori M, McGhie TK, Hallett IC, Costa G (2007) Colour in Actinidia fruit. Acta Hort 753:465–472. doi:10.17660/ActaHortic.2007.753.60

    Article  CAS  Google Scholar 

  • Montefiori M, Comeskey DJ, Wohlers M, McGhie TK (2009a) Characterization and quantification of anthocyanins in red kiwifruit (Actinidia spp.). J Agric Food Chem 57(15):6856–6861. doi:10.1021/jf900800z

    Article  CAS  PubMed  Google Scholar 

  • Montefiori M, McGhie TK, Hallett IC, Costa G (2009b) Changes in pigments and plastid ultrastructure during ripening of green-fleshed and yellow-fleshed kiwifruit. Sci Hort 119(4):377–387. doi:10.1016/j.scienta.2008.08.022

    Article  CAS  Google Scholar 

  • Montefiori M, Espley RV, Stevenson D, Cooney J, Datson PM, Saiz A et al (2011) Identification and characterisation of F3GT1 and F3GGT1, two glycosyltransferases responsible for anthocyanin biosynthesis in red-fleshed kiwifruit (Actinidia chinensis). Plant J 65(1):106–118. doi:10.1111/j.1365-313X.2010.04409.x

    Article  CAS  PubMed  Google Scholar 

  • Montefiori M, Brendolise C, Dare AP, Lin-Wang K, Davies KM, Hellens RP et al (2015) In the Solanaceae, a hierarchy of bHLHs confer distinct target specificity to the anthocyanin regulatory complex. J Exp Bot 66(5):1427–1436. doi:10.1093/jxb/eru494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama I, Fukuda T, Oota T (2007) Cultivar difference in chlorophyll, lutein and beta-carotene content in the fruit of kiwifruit and other Actinidia species. Acta Hort 753:473–478

    Article  CAS  Google Scholar 

  • Ohmiya A (2013) Involvement of CCD4 in white petal color formation. In: Winterhalter P, Ebeler SE (eds) Carotenoid cleavage products, ACS Symposium Series, Vol. 1134, American Chemical Society. Washinton, DC, pp 21–30. doi:10.1021/bk-2013-1134.ch003

    Google Scholar 

  • Pan Y, Bradley G, Pyke K, Ball G, Lu CG, Fray R et al (2013) Network inference analysis identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits. Plant Physiol 161(3):1476–1485. doi:10.1104/pp.112.212654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S-Y, Yu J-W, Park J-S, Li J, Yoo S-C, Lee N-Y et al (2007) The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19(5):1649–1664. doi:10.1105/tpc.106.044891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilkington SM, Montefiori M, Jameson PE, Allan AC (2012) The control of chlorophyll levels in maturing kiwifruit. Planta 236(5):1615–1628

    Article  CAS  PubMed  Google Scholar 

  • Pilkington SM, Montefiori M, Galer AL, Emery RJN, Allan AC, Jameson PE (2013) Endogenous cytokinin in developing kiwifruit is implicated in maintaining fruit flesh chlorophyll levels. Ann Bot 112(1):57–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quattrocchio F, Wing J, van der Woude K, Souer E, de Vetten N, Mol J et al (1999) Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. Plant Cell 11(8):1433–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AC, Boldingh HL, McAtee PA, Gunaseelan K, Luo ZW, Atkinson RG et al (2011) Fruit development of the diploid kiwifruit, Actinidia chinensis ‘Hort16A’. BMC Plant Biol 11. doi:10.1186/1471-2229-11-182

    Google Scholar 

  • Sagawa J, Stanley L, LaFountain A, Frank H, Liu C, Yuan Y-W (2015) An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers. New Phytol in press

    Google Scholar 

  • Schwinn KE, Venail J, Shang Y-J, Mackay S, Alm V, Butelli E et al (2006) A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18:831–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • This P, Lacombe T, Cadle-Davidson M, Owens CL (2007) Wine grape (Vitis vinifera L.) color associates with allelic variation in the domestication gene VvmybA1. Theor Appl Genet 114(4):723–730

    Article  PubMed  Google Scholar 

  • Werner T, Schmülling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12(5):527–538. doi:10.1016/j.pbi.2009.07.002

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Owsiany K, Sheeja TE, Zhou X-J, Rodriguez C, Li Y-X et al (2015) A single amino acid substitution in an ORANGE protein promotes carotenoid overaccumulation in arabidopsis. Plant Physiol 169(1):421–431. doi:10.1104/pp.15.00971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Y-L, Du J-B, Wang L, Pan Z-Y, Xu Q, Xiao S-Y et al (2015) A comprehensive analysis of chromoplast differentiation reveals complex protein changes associated with plastoglobule biogenesis and remodeling of protein systems in sweet orange flesh. Plant Physiol 168(4):1648–1665. doi:10.1104/pp.15.00645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Liu C, Wang Y-Q, Yao X, Wang F, Wu J-S et al (2015) Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4 gene converts flower colour from white to yellow in Brassica species. New Phytol 206(4):1513–1526. doi:10.1111/nph.13335

    Article  CAS  PubMed  Google Scholar 

  • Zufall RA, Rausher MD (2004) Genetic changes associated with floral adaptation restrict future evolutionary potential. Nature 428(6985):847–850. doi:10.1038/nature02489

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirco Montefiori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Montefiori, M., Pilkington, S.M., Davies, K.M., Allan, A.C. (2016). Genetics of Pigment Biosynthesis and Degradation. In: Testolin, R., Huang, HW., Ferguson, A. (eds) The Kiwifruit Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-32274-2_12

Download citation

Publish with us

Policies and ethics