Skip to main content

Neuronal Synchronization, Attention Orienting, and Primary Consciousness

  • Chapter
  • First Online:
Multimodal Oscillation-based Connectivity Theory

Abstract

How does the brain implement cognitive processes? Part of the answer is specialization of function in particular regions. But complex cognitive processes involved in attention, memory, and consciousness require the coordinated activity of several or many of these specialized regions. Moreover, the specialized regions often (always?) exhibit different functions depending on the particular subset of other regions with which they are interacting. Finally, because cognitive tasks vary dramatically over timescales of hundreds of milliseconds to seconds, the functionally relevant regional networks must form and dissolve over these short timescales, which are too short to accommodate mechanisms such as synaptic modification via spike-timing dependent plasticity. It has been suggested that oscillatory synchronization of neural activity provides a mechanism whereby networks of functionally specialized brain regions could function transiently on such timescales. This chapter begins to make the case that for attention and consciousness, at least, this mechanism is deeply involved in implementing the required functional networks. It also briefly considers the implications of the role of oscillatory neural synchronization in cognition for the global workspace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akam T, Kullman DM (2014) Oscillatory multiplexing of population codes for selective communication in the mammalian brain. Nat Rev Neurosci 15:111–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aru J, Aru J, Priesemann V, Wibral M, Lana L, Pipa G, Singer W, Vicente R (2015) Untangling cross-frequency coupling in neuroscience. Curr Opin Neurobiol 31:51–61

    Article  CAS  PubMed  Google Scholar 

  • Azouz R, Gray CM (2000) Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. Proc Natl Acad Sci USA 97:8110–8115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baars BJ (1997) In the theatre of consciousness. J Conscious Stud 4(4):521–535

    Google Scholar 

  • Bastos AM, Vezoli J, Fries P (2015) Communication through coherence with inter-areal delays. Curr Opin Neurobiol 31:173–180

    Article  CAS  PubMed  Google Scholar 

  • Bedo N, Ribary U, Ward LM (2014) Fast dynamics of cortical effective connectivity during word reading. PLoS One 9(2), e88940 (1–13)

    Article  PubMed  PubMed Central  Google Scholar 

  • Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B (2000) Voice-selective areas in human auditory cortex. Nature 403:309–312

    Article  CAS  PubMed  Google Scholar 

  • Brunel N, Hakim V (1999) Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput 11:1621–1671

    Article  CAS  PubMed  Google Scholar 

  • Buzsáki G (2006) Rhythms of the brain. Oxford University Press, New York

    Book  Google Scholar 

  • Buzsáki G, Schomberg EW (2015) What does gamma coherence tell us about inter-regional neural communication? Nat Neurosci 18:1–7

    Article  Google Scholar 

  • Buzsáki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225

    Article  PubMed  PubMed Central  Google Scholar 

  • Canolty RT, Knight RT (2010) The functional role of cross-frequency coupling. Trends Cogn Sci 14:506–515

    Article  PubMed  PubMed Central  Google Scholar 

  • Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 313:1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-driven and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58:308–324

    Article  Google Scholar 

  • Cosmelli D, David O, Lachaux JP, Martinerie J, Garnero L et al (2004) Waves of consciousness: ongoing cortical patterns during binocular rivalry. Neuroimage 23:128–140

    Article  PubMed  Google Scholar 

  • Dehaene S, Cohen L (2011) The unique role of the visual word form area in reading. Trends Cogn Sci 15:254–262

    Article  PubMed  Google Scholar 

  • Dehaene S, Naccache J (2001) Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79:1–37

    Article  CAS  PubMed  Google Scholar 

  • Doesburg SM, Ward LM (2007) Long-distance alpha-band MEG synchronization maintains selective visual attention. Int Congr Ser 1300:551–554

    Article  Google Scholar 

  • Doesburg SM, Ward LM (2009) Synchronization between sources: emerging methods for understanding large-scale functional networks in the human brain. In: Perez-Velazquez J-L, Wennberg R (eds) Coordinated activity in the brain. Springer, New York, pp 25–42

    Chapter  Google Scholar 

  • Doesburg SM, Kitajo K, Ward LM (2005) Increased gamma-band synchrony precedes switching of conscious perceptual objects in binocular rivalry. Neuroreport 2:229–239

    Google Scholar 

  • Doesburg SM, Herdman A, Ward LM (2007) MEG reveals synchronous neural network for visuospatial attention. Poster presented at CNS Meeting, New York City

    Google Scholar 

  • Doesburg SM, Roggeveen AB, Kitajo K, Ward LM (2008) Large-scale gamma-band phase synchronization and selective attention. Cereb Cortex 18(2):386–396. doi:10.1093/cercor/bhm073

    Article  PubMed  Google Scholar 

  • Doesburg SM, Green JJ, McDonald JJ, Ward LM (2009a) From local inhibition to long-range integration: a functional dissociation of alpha-band synchronization across cortical scales in visuospatial attention. Brain Res 1303C:97–110. doi:10.1016/j.brainres.2009.09.069

    Article  Google Scholar 

  • Doesburg SM, Green JJ, McDonald JJ, Ward LM (2009b) Rhythms of consciousness: binocular rivalry reveals large-scale oscillatory network dynamics mediating visual perception. PLoS One 7, e6142 (1–14)

    Article  Google Scholar 

  • Doesburg SM, Green JJ, McDonald JJ, Ward LM (2012) Theta modulation of inter-regional gamma synchronization during auditory attention control. Brain Res 1431:77–85

    Article  CAS  PubMed  Google Scholar 

  • Doesburg SM, Bedo N, Ward LM (2016) Top-down alpha oscillatory network interactions during visuospatial attention orienting. NeuroImage 132:512–519

    Google Scholar 

  • Drewes AM, Sami SAK, Dimcevski G, Nielsen KD, Funch-Jensen P, Valeriani M, Arendt-Nielsen L (2006) Cerebral processing of painful oesophageal stimulation: a study based on independent component analysis of the EEG. Gut 55:619–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480

    Article  PubMed  Google Scholar 

  • Fries P, Roelfsema PR, Engel AK, Königl P, Singer W (1997) Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Proc Natl Acad Sci USA 94:12699–12704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green JJ, McDonald JJ (2008) Electrical neuroimaging reveals timing of attentional control activity in human brain. PLoS Biol 6(4), e81

    Article  PubMed Central  Google Scholar 

  • Green JJ, McDonald JJ (2009) A practical guide to beamformer source reconstruction for EEG. In: Handy TC (ed) Brain signal analysis: advances in neuroelectric and neuromagnetic methods. The MIT Press, Cambridge, MA, pp 79–98

    Chapter  Google Scholar 

  • Green JJ, Doesburg SM, Ward LM, McDonald JJ (2011) Electrical neuroimaging of voluntary audio-spatial attention: evidence for a supramodal attention control network. J Neurosci 31:3560–3564

    Article  CAS  PubMed  Google Scholar 

  • Greenwood PE, McDonnell MD, Ward LM (2015) Dynamics of gamma bursts in local field potentials. Neural Comput 27:74–103

    Article  PubMed  Google Scholar 

  • Gregoriou GG, Paneria S, Sapountzis P (2015) Oscillatory synchrony as a mechanism of attentional processing. Brain Res 1626:165–182

    Article  CAS  PubMed  Google Scholar 

  • Gross J, Schmitz F, Schnitzler I, Kessler K, Shapiro K et al (2004) Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proc Natl Acad Sci USA 101:13050–13055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossberg S (2000) The complementary brain: unifying brain dynamics and modularity. Trends Cogn Sci 4:233–246

    Article  PubMed  Google Scholar 

  • Jones EG (2001) The thalamic matrix and thalamocortical synchrony. Trends Neurosci 24:595–601

    Article  CAS  PubMed  Google Scholar 

  • Kang K, Shelley M, Henrie JA, Shapley R (2010) LFP spectral peaks in V1 cortex: network resonance and cortico-cortical feedback. J Comput Neurosci 29:495–507

    Article  PubMed  Google Scholar 

  • Kanwisher N (2006) What’s in a face? Science 311:617–618

    Article  CAS  PubMed  Google Scholar 

  • Koch C, Tsuchiya N (2006) Attention and consciousness: two distinct brain processes. Trends Cogn Sci 11:16–22

    Article  PubMed  Google Scholar 

  • Lamme VAF (2003) Why visual attention and awareness are different. Trends Cogn Sci 7:12–18

    Article  PubMed  Google Scholar 

  • Lamme VAF, Roelfsema PR (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci 23:571–579

    Article  CAS  PubMed  Google Scholar 

  • Llinás R, Ribary U, Contreras D, Pedroarena C (1998) The neuronal basis for consciousness. Philos Trans R Soc London Ser B 353:1841–1849

    Article  Google Scholar 

  • Logothetis N, Schall JD (1989) Neuronal correlates of subjective visual perception. Science 245:761–763

    Article  CAS  PubMed  Google Scholar 

  • Lumer ED, Edelman GM, Tononi G (1997) Neural dynamics in a model of the thalamocortical system. I. Layers, loops and the emergence of fast synchronous rhythms. Cereb Cortex 7:207–227

    Article  CAS  PubMed  Google Scholar 

  • McIntosh AR (2000) Towards a network theory of cognition. Neural Netw 13:861–870

    Article  CAS  PubMed  Google Scholar 

  • Niebur E, Hsiao SS, Johnson KO (2002) Synchrony: a neuronal mechanism for attentional selection? Curr Opin Neurobiol 12:190–194

    Article  CAS  PubMed  Google Scholar 

  • Palva S, Palva JM (2007) New vistas for alpha-frequency band oscillations. Trends Neurosci 30:150–158

    Article  CAS  PubMed  Google Scholar 

  • Pessoa L (2014) Understanding brain networks and brain organization. Phys Life Rev 11:400–435

    Article  PubMed  PubMed Central  Google Scholar 

  • Popescu AT, Popa D, Paré D (2009) Coherent gamma oscillations couple the amygdala and striatum during learning. Nat Neurosci 12:801–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolls ET, Treves A (2011) The neuronal encoding of information in the brain. Prog Neurobiol 95:448–490

    Article  PubMed  Google Scholar 

  • Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2:539–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherg M, Ille N, Bornfleth H, Berg P (2002) Advanced tools for digital EEG review: virtual source montages, whole-head mapping, correlation, and phase analysis. J Clin Neurophysiol 19:91–112

    Article  PubMed  Google Scholar 

  • Simons DJ, Rensink RA (2005) Change blindness: past present and future. Trends Cogn Sci 9:16–20

    Article  PubMed  Google Scholar 

  • Somers D, Kopell N (1993) Rapid synchrony through fast threshold modulation. Biol Cybern 68:393–407

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan R, Russell DP, Edelman GM, Tononi G (1999) Increased synchronization of neuromagnetic responses during conscious perception. J Neurosci 19:5435–5448

    CAS  PubMed  Google Scholar 

  • Supp GG, Schlögl A, Trujillo-Barreto N, Müller M, Gruber T (2007) Directed cortical information flow during human object recognition: analyzing induced EEG gamma-band responses in brain’s source space. PLoS One 2(8), e648

    Article  Google Scholar 

  • Taylor JG (2007) CODAM model: through attention to consciousness. Scholarpedia 2(11):1598

    Article  Google Scholar 

  • Tononi G, Edelman GM (1998) Consciousness and complexity. Science 282:1846–1851

    Article  CAS  PubMed  Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239

    Article  CAS  PubMed  Google Scholar 

  • Volgushev M, Chistiakova M, Singer W (1998) Modification of discharge patterns of neocortical neurons by induced oscillations of the membrane potential. Neuroscience 83:15–25

    Article  CAS  PubMed  Google Scholar 

  • von Stein A, Sarnthein J (2000) Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol 38:301–313

    Article  Google Scholar 

  • Ward LM (2003) Synchronous neural oscillations and cognitive processes. Trends Cogn Sci 17:553–559

    Article  Google Scholar 

  • Ward LM (2004) Oscillations and synchrony in cognition. In: Jirsa V, Kelso JAS (eds) Coordination dynamics: issues and trends. Springer, New York, pp 217–242

    Chapter  Google Scholar 

  • Ward LM (2011) The thalamic dynamic core theory of conscious experience. Conscious Cogn 20:464–486

    Article  PubMed  Google Scholar 

  • Ward LM, Doesburg SM (2009) Synchronization analysis in EEG and MEG. In: Handy TC (ed) Brain signal analysis: advances in neuroelectric and neuromagnetic methods. MIT Press, Cambridge, MA, pp 171–204

    Chapter  Google Scholar 

  • Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12:1–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worden MS, Foxe JJ, Wang N, Simpson GV (2000) Anticipatory biasing of visuospatial attention indexed by retinotopically specific α-band electroencephalography increases over occipital cortex. J Neurosci 20(63):1–6

    Google Scholar 

  • Wright RD, Ward LM (2008) Orienting of attention. Oxford University Press, New York

    Google Scholar 

Download references

Acknowledgement

This chapter and much of the research described were sponsored by Discovery Grant A9958 from the Natural Sciences and Engineering Research Council (NSERC) of Canada. I thank the coauthors of the various papers emanating from the laboratories of myself and my collaborators whose results I describe here for their vital contributions to this research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence M. Ward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ward, L.M. (2016). Neuronal Synchronization, Attention Orienting, and Primary Consciousness. In: Palva, S. (eds) Multimodal Oscillation-based Connectivity Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-32265-0_3

Download citation

Publish with us

Policies and ethics