Skip to main content

Simulating Radially Outward Winds Within a Turbulent Gas Clump

  • Conference paper
  • First Online:
High Performance Computer Applications (ISUM 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 595))

Included in the following conference series:

  • 845 Accesses

Abstract

By using the particle-based code Gadget2, we follow the evolution of a gas clump, in which a gravitational collapse is initially induced. The particles representing the gas clump have initially a velocity according to a turbulent spectrum built in a Fourier space of 64\(^3\) grid elements. In a very early stage of evolution of the clump, a set of gas particles representing the wind, suddenly move outwards from the clump’s center. We consider only two kinds of winds, namely: one with spherical symmetry and a second one being a bipolar collimated jet. In order to assess the dynamical change in the clump due to interaction with the winds, we show iso-velocity and iso-density plots for all our simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A parsec (pc) is equivalent to \(3.08 \, \times 10^{18}\, \)cm and a solar mass \(M_{\odot }\) is equivalent to \(1.99 \, \times 10^{33}\, \)g.

  2. 2.

    Any star does radiate its own energy produced by thermonuclear reactions in its interior, but a protostar does not. This is the main difference between a star and a protostar; but they can share some dynamical properties as they are stable structures of different stages of the same formation process.

References

  1. Bergin, E.A., Tafalla, M.: Cold dark clouds: the initial conditions for star formation. Ann. Rev. Astron. Astrophys. 45(1), 339–396 (2007)

    Article  Google Scholar 

  2. Dale, J.E., Bonnell, I.A., Whitworth, A.P.: Ionization induced star formation—I. The collect-and-collapse model. Mon. Not. R. Astron. Soc. 375(4), 1291–1298 (2007)

    Article  Google Scholar 

  3. Li, Z.-Y., Nakamura, F.: Cluster formation in protostellar outflow-driven turbulence. Astrophys. J. Lett. 640(2), L187–L190 (2006)

    Article  Google Scholar 

  4. Nakamura, F., Li, Z.-Y.: Protostellar turbulence driven by collimated outflows. Astrophys. J. 662(1), 395–412 (2007)

    Article  Google Scholar 

  5. Bodenheimer, P., Burkert, A., Klein, R.I., Boss, A.P.: Multiple fragmentation of protostars. In: Mannings, V.G., Boss, A.P., Russell, S.S. (eds.) Protostars and Planets, 4th edn, p. 675. University of Arizona Press, Tucson (2000)

    Google Scholar 

  6. Smith, N.: Wondering about things. Ann. Rev. Astron. Astrophys. 52, 1–45 (2014)

    Article  Google Scholar 

  7. Gueth, F., Guilloteau, S.: The jet-driven molecular outflow of HH 211. Astron. Astrophys. 343(2), 571–584 (1999)

    Google Scholar 

  8. Dubinski, J., Narayan, R., Phillips, T.G.: Turbulence in molecular clouds. Astrophys. J. 448(1), 226–231 (1995)

    Article  Google Scholar 

  9. Dobbs, C.L., Bonnell, I.A., Clark, P.C.: Centrally condensed turbulent cores: massive stars or fragmentation? Mon. Not. R. Astron. Soc. Lett. 360(1), 2–8 (2005)

    Article  Google Scholar 

  10. Truelove, J.K., Klein, R.I., Mckee, C.F., Holliman II, J.H., Howell, L.H., Greenough, J.A.: The jeans condition: a new constraint on spatial resolution in simulations of isothermal self-gravitational hydrodynamics. Astrophys. J. Lett. 489(2), L179 (1997)

    Article  Google Scholar 

  11. Bate, M.R., Burkert, A.: Resolution requirements for smoothed particle hydrodynamics calculations with selfgravity. Mon. Not. R. Astron. Soc. 288(4), 1060–1072 (1997)

    Article  Google Scholar 

  12. Boss, A.P., Fisher, R.T., Klein, R.I., McKee, C.F.: The jeans condition and collapsing molecular cloud cores: filaments or binaries? Astrophys. J. 528(1), 325–335 (2000)

    Article  Google Scholar 

  13. Arreaga, G., Klapp, J., Sigalotti, L., Gabbasov, R.: Gravitational collapse and fragmentation of molecular cloud cors with GADGET2. Astrophys. J. 666, 290–308 (2007)

    Article  Google Scholar 

  14. Springel, V.: The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 364(4), 1105–1134 (2005)

    Article  Google Scholar 

  15. Monaghan, J.J., Gingold, R.A.: On the fragmentation of differentially rotating clouds. Mon. Not. R. Astron. Soc. 204(3), 715–733 (1983)

    Article  Google Scholar 

  16. Balsara, D.S.: Von Neumann stability analysis of smoothed particle hydrodynamics—suggestions for optimal algorithms. J. Comput. Phys. 121(2), 357–372 (1995)

    Article  MATH  Google Scholar 

  17. Hopkins, P.F.: A general class of Lagrangian smoothed particle hydrodynamics methods and implications for fluid mixing problems. Mon. Not. R. Astron. Soc. 428(4), 2840–2856 (2013)

    Article  Google Scholar 

  18. Walsh, A.J., Bourke, T.L., Myers, P.C.: Observations of global and local infall in NGC 1333. Astrophys. J. 637(2), 860–868 (2006)

    Article  Google Scholar 

  19. Peretto, N., André, P., Belloche, A.: Probing the formation of intermediate- to high-mass stars in protoclusters: a detailed millimeter study of the NGC 2264 clumps. Astron. Astrophys. 445(3), 979–998 (2006)

    Article  Google Scholar 

  20. Palau, A., Ballesteros-Paredes, J., Vazquez-Semanedi, E., Sanchez-Monge, A., Estalella, R., Fall, M., Zapata, L.A., Camacho, V., Gomez, L., Naranjo-Romero, R., Busquet, G., Fontani, F.: Gravity or turbulence? - III. Evidence of pure thermal Jeans fragmentation at \(\sim 0.1\) pc scale. Mon. Not. R. Astron. Soc. 453(4), 3785–3797 (2015)

    Article  Google Scholar 

  21. Arreaga-Garcia, G., Saucedo-Morales, J.C.: Hydrodynamic modeling of the interaction of winds within a collapsing turbulent gas cloud. Adv. Astron. 2015 (2015). Article ID 0196304

    Google Scholar 

Download references

Acknowledgments

We would like to thank ACARUS-UNISON for the use of their computing facilities in the making of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Arreaga-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Arreaga-García, G., Topa, S.O. (2016). Simulating Radially Outward Winds Within a Turbulent Gas Clump. In: Gitler, I., Klapp, J. (eds) High Performance Computer Applications. ISUM 2015. Communications in Computer and Information Science, vol 595. Springer, Cham. https://doi.org/10.1007/978-3-319-32243-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32243-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32242-1

  • Online ISBN: 978-3-319-32243-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics